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Preface

This volume constitutes the post-proceedings of the 2005 Computer Music Mod-
eling and Retrieval Symposium (CMMR2005). This event took place during
September 26–28, 2005 at the Institute of Information Science and Technologies
(ISTI), Italian National Research Council (CNR), Pisa, Italy. CMMR is an an-
nual event focusing on various aspects of computer music. CMMR2005 is the
third event in this series. The previous event, CMMR2004, was held in Esb-
jerg, Denmark, while CMMR2003 was held in Montpellier, France. The CMMR
2003 and CMMR 2004 post-symposium proceedings were published by Springer
in the Lecture Notes in Computer Science series, LNCS 2771 and LNCS 3310,
respectively. CMMR2005 was jointly organized by Laboratoire de Mécanique
et d’Acoustique (LMA), Centre National de la Recherche Scientifique (CNRS),
Marseille, France and ISTI, CNR, Pisa, Italy.

The field of computer music is interdisciplinary by nature and closely related
to a number of computer sciences and engineering areas such as information
retrieval, programming, human computer interaction, digital libraries, hyperme-
dia, artificial intelligence, acoustics, signal processing, etc. In this year’s CMMR
we wanted to emphasize the human interaction in music, simply the PLAY,
meaning that papers related to sound modeling, real-time interaction, interac-
tive music, perception and cognition were encouraged. The traditional themes
related to information retrieval, programming, digital libraries, and artificial in-
telligence of course also constituted an important part of the conference as they
did in the two previous conferences. The large variability of topics led to fruitful
discussions gathering specialists from different fields.

As a novelty in CMMR2005, music contributions were made possible. Various
nontraditional, real-time interfaces were presented and used during a concert in
the CinemaTeatroLUX in Pisa.

We would first of all like to thank Leonello Tarabella and Graziano Bertini
for being the Symposium Chairs, and Massimo Magrini and Stefano Giorgetti
for helping with local arrangements and technical support. We would further like
to thank the Program Committee members for their crucial paper reports, and
all the participants, be it scientists or composers, who contributed with papers
and music and made the CMMR2005 a varied and inspiring event. Finally, we
would like to thank Springer-Heidelberg for accepting the publication of the
CMMR2005 post-proceedings in their LNCS series.

December 2005 Richard Kronland-Martinet
Sølvi Ystad

Thierry Voinier
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Dynamic Simulation of Note Transitions
in Reed Instruments: Application to the Clarinet

and the Saxophone

Philippe Guillemain and Jonathan Terroir

CNRS - Laboratoire de Mécanique et d’Acoustique,
31, chemin Joseph Aiguier, 13402, Marseille cedex 20, France

{guillem, terroir}@lma.cnrs-mrs.fr
http://www.lma.cnrs-mrs.fr

Abstract. This paper deals with the simulation of transitions between
notes in the context of real-time sound synthesis based on physical mod-
els of reed instruments. For that purpose, both the physical and the
subjective point of view are considered. From a physical time-varying
tonehole model a simple transition model is built, the parameters of
which are adapted in order to fit with measurements obtained in normal
playing situations. The model is able to reproduce the main perceptive
effects, both from the listener point of view, which is a frequency glis-
sando, loudness and brightness variations, and from the player point of
view, which is a reduced ease of playing during the transition.

1 Introduction

Sound synthesis based on a modeling of the physical behavior of musical in-
struments is known to be able to reproduce most of the dynamic aspects of the
control of the instruments. It is specifically useful for self-oscillating instruments
such as woodwinds or bowed strings instruments, for which the musician has
under his control several continuous parameters that act on the pitch, loudness
and timbre of the instrument. On these instruments, the simulation of transi-
tions between different pitches is a crucial problem, since a continuous sound
production during the closing or opening of toneholes occurs very often in the
musical play. For reed instruments, the dynamics of the transition itself can be
considered as a part of the musical performance, since the player can decide at
what speed the holes are opened or closed. Moreover, transitions have noticeable
effects from the point of views of both the player and the listener. The player
observes a reduced ease of playing, while the listener may perceive a glissando
in frequency during a slow closing or opening, together with variations in the
intensity and the brightness of the sound.

In this paper, we present a study the aim of which is to propose a very simple
but realistic transition model adapted to the real-time synthesis and control of
the clarinet using physical models such as those developed by Guillemain et al.
[6]. This study extends the results described in [14] thanks to the comparison
with natural sounds and the application of the method to the tenor saxophone.

R. Kronland-Martinet, T. Voinier, and S. Ystad (Eds.): CMMR 2005, LNCS 3902, pp. 1–23, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 P. Guillemain and J. Terroir

Experimental signals obtained in usual playing situations of a natural instru-
ment are first considered . In order to get rid of possible artifacts due to a human
play, we consider note transitions requiring the closing or opening of a single hole.
From the analysis of these signals, we show that the shapes of the frequency glis-
sando, the perceived intensity and the brightness are identical in the closing or
opening phases and are independent of the speed at which a tonehole is closed
or opened, up to a scaling factor in time.

The next section deals with the physical modeling of the dynamic closing
of a tonehole. Many studies have been devoted to the study of toneholes (see
for example [9], [11] or [3]). Benade [1] showed that the equivalent length of a
single hole pipe is directly function of the geometric properties of the hole. Keefe
[10] studied the influence of the size of the holes on frequency, amplitude and
playing characteristics. Dalmont and al. [2] have shown how the size of the hole
can modify the perceived pitch, timbre and energy. The knowledge of how the
hole modifies the behavior of the instrument is essential but what happens during
the closing is very important too. Nederveen [12] has considered the influence
of the key during the closing, so as Ducasse [4], who has implemented a model
of progressive closing of the tonehole, and Scavone and Cook [13] who simulate
the closing by varying the reflectance filter of the tonehole between its fully
open value and a value nearly equal to one (corresponding to the reflection of
the pressure wave at the closed end of the hole). Here, we restrain ourselves to
a very simple model, made of a perfectly cylindrical bore and a single, small,
opened side-branch with time-varying radius. We show that despite its simplicity,
this model is sufficient for the reproduction of the loss of ease of playing, induced
by a loss of harmonicity of the impedance peaks and a decrease in the amplitude
of the first peaks.

In the next sections, we propose a simplified implementation of this model for
use with real-time synthesis, based on an interpolation between the difference
equations corresponding to two different resonator lengths. The interpolation
coefficients are finally adapted in order to fit with the experimental signals.

The validity of the transition model is checked for conical bores by comparing
natural and synthesized saxophone sounds. Last section is devoted to conclusions
and perspectives of this work.

2 Experimental Results on the Clarinet

2.1 Experimental Protocol

Measurements have been done on a B-flat clarinet (Yamaha YCL250). In order
to observe how the perceived sound is changing during the tonehole closing
(or opening), the external pressure has been measured. First, the musician has
been asked to close (or open) the first tonehole closed by a “perforated key”
(corresponding to the transition from G2 to F2) so as he may close it by bringing
closer the finger to the hole until the finger fully closes the hole, as he does during
a normal performance, or by sliding his finger so as it progressively reduces
the surface of the hole. The second closing technique was used since it can be
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modelled as a dynamic reduction of the tone hole radius. In order to investigate if
the behavior of the transition changes with the closing speed or the kind of action
(closing or opening) the musician has been asked to perform the closing and the
opening for several speeds (from very slow to very fast). The measurements
have been done with an omnidirectional KU81 Neumann in a semi-anechoic
room, installed one meter away face to the musician, in order to capture what a
listener is hearing.

2.2 Objective Parameters

In this section, we consider objective parameters linked to the behavior of the
measured signals, namely the frequencies and amplitude variations of the har-
monics during the closing of a tonehole, as functions of the speed or the kind of
action (closing or opening).

Frequency of the Harmonics. Figure 1 shows the spectrogram of a measured
signal for a slow closing from G2 to F2 fingering.

Fig. 1. Spectrogram of a measured external pressure signal obtained for a slow closing
from G2 to F2 fingering

Figure 1 clearly shows a frequency glissando. This result is in agreement with
the description of the musicians mentioned e.g in [2] or [4]. In order to check
if this behavior is the same for each speed or when opening the tonehole, the
musician has been asked to close the tonehole with different speeds from very
slow to very fast. The figure 2 shows how the frequency of the first harmonic is
changing during the closing for four different closing speeds and for one opening
(the curve is reversed for an easier comparison). The duration of the closings
are 800ms and 700ms for the very slow closings, 300ms for the medium one,
150ms for the fast one and 90ms for the fast opening. These estimated values
correspond to the duration between the two stationary pitches. For each sound,
only the closing duration has been considered and an appropriate linear time
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Fig. 2. Variations of the frequency of the first harmonic of measured external pressure
signals for different tonehole closing speeds and for a fast opening. Slow closing: solid
line and dotted line; intermediate closing speed: dotted line; fast closing: dashed-dotted
line; fast opening (reverse curve): circles.

scaling makes it possible to superimpose all the curves in order to allow us to
easily compare the different behaviors. One can notice that for each external
pressure signal the curves are very similar. Thus, in a synthesis context, this
suggests that it is possible to control a transition model only by its duration.

In order to confirm that the frequency of the first harmonic is always varying
in a similar way, a second musician has been asked to play some additional
sounds with a different instrument. As the first player, the second one recorded
slow tonehole closing by sliding his finger or bringing the finger closer to the hole.
As it is shown on figure 3, one can notice similar frequencies variations for each
musician. Moreover it is important to notice that the two different techniques
the musicians have been asked to use are giving similar frequency variations.
The frequency variations of the fundamental seems to be a robust parameter
always leading to a similar behavior.

Amplitude of the Harmonics. Let us consider now the variations of the am-
plitudes of the harmonics during the transition. Since the radiation of the instru-
ment depends on the frequency, the directivity and location of the microphone
and the position of the musician, the recording conditions (and consequently the
listening ones) play a very important role on the amplitude variations of each
harmonic that are observed. Moreover, some aspects can have a strong influence
on the variations of the level of the harmonics. First, one can mention physi-
cal aspects such as localized nonlinearities that may happen for high blowing
pressures or direct excitation of the air column at the location of the tonehole
induced by the shock of the finger or the key pad for very fast closings. The
second aspect is the “human factor”. For each recorded sound, there is a vari-
ability of the control parameters such as the blowing pressure and the average
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Fig. 3. Variations of the frequency of the first harmonic of measured external pressure
signals for different tonehole closing techniques with two different musicians. Solid line:
variations obtained by bringing closer the finger to the hole (musician 1); dotted line:
variations obtained by sliding the finger on the hole (musician 1); dashed line: variations
obtained by bringing closer the finger to the hole (musician 2); dashed-dotted line:
variations obtained by sliding the finger on the hole (musician 2).

opening of the reed channel. The musician does not blow or press the reed the
same way for each sound he produces. Indeed, after the recordings, we asked
the musician to comment the difficulty of the task. The first remark was related
to the “unconscious” adjustment of the control parameters in order to prevent
the raising of squeaks during slow closings (though the main instruction was to
keep the control parameters as constant as possible). The second remark was
linked to the way the tonehole closing was done. The instruction was to close
it continuously with a constant velocity of the finger, but musicians admitted
that because of the sensation on the finger and the risk of squeaks, it was very
difficult to keep the velocity constant. For all these reasons, it seems difficult to
use the variation of the amplitude of each individual components. Moreover, in
a synthesis context, the question is not “does a simplified model acts as a real
instrument ?” but rather “what kind of behavior must be in agreement with
the perception of natural sounds?”. Careful listening to the recorded sounds
gives two important and reproducible sensations : the glissando effect previously
studied and the sensation that the intensity and the brightness of the sound are
first decreasing and then increasing. In order to quantify these variations of the
perceived sound intensity, we shall consider the global subjective parameters,
rather than the individual levels of the harmonics.

2.3 Subjective Parameters

Loudness
According to Zwicker [18], the subjective parameter directly linked to the per-
ceived intensity of the sound is the loudness. Figure 4 shows how the loudness of
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the measured signals is varying for the two musicians and several closing tech-
niques. It is worth noticing that the loudness is well defined only for stationary
signals. For the purpose of this study, we have considered the non stationary
signal during the transition as a succession of stationary signals with a 22ms
duration. Though the perceptive relevancy of the loudness in such a situation
might be questionable, it constitutes a computation tool that allows an objective
comparison between signals.
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Fig. 4. Variations of the loudness of measured external pressure signals for different
tonehole closing speeds and for a fast opening. Slow closing: solid line and dotted line;
intermediate closing speed: dashed line; fast closing: dashed-dotted line; fast opening
(reverse curve): points.

Similarly to the frequency variations, figure 4 shows that the loudness of
the measured signals has a typical shape. One can notice a “valley” which corre-
sponds to a decrease of the perceived intensity. In order to evaluate the influence
of the location of the microphone (and consequently of the listener) the sounds
have been recorded simultaneously with a directive microphone hanged on the
bell of the clarinet. This way, the external pressure is directly measured at the
open end of the clarinet. This measure shows that the loudness variations are
similar for the two microphones, even though the amplitudes of the harmon-
ics have very different behaviors in the two measures (due to the microphone
location and the toneholes radiation).

Brightness
As it has been previously mentioned a careful listening of the sound variation
during the tonehole closing shows that the reduction of the loudness comes with
a fall of the “brightness” of the sound. Some previous studies have shown that
the spectral centroid is one of the parameters directly linked to the notion of
“brightness” [5]. The brightness can be expressed as follows (equation 1), with fi
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Fig. 5. Variations of the spectral centroid of a measured external pressure signal

the frequency of the ith component, Ai its amplitude and N the number of com-
ponents taken into account. N corresponds to the last harmonic the amplitude
of which is greater than a given threshold.

SG =
∑N

i=1 fiAi∑N
i=1 Ai

(1)

Figure 5 shows the variations of the spectral centroid during a slow tonehole
closing performed by a musician. According to him the control parameters have
been kept as constant as possible. One can notice that there is a decrease of the
spectral centroid during the closing. It means that the brightness of the sound
is reduced during the transition. This is in accordance with the perceptive effect
we previously mentioned. Moreover this kind of behavior is independent of the
technique (sliding / bringing closer), the kind of action (closing / opening) or the
speed. Nevertheless it is worth noticing that the values of the spectral centroid
depends on the playing conditions (e.g. blowing pressure).

In the next sections, we shall study a physical dynamic tonehole model, sim-
plify its implementation so that it is compatible with real-time synthesis and
adapt its parameters in order to reproduce the frequency and loudness varia-
tions observed on the natural transition sounds.

3 Simplified Physical Model

3.1 Bore Model

We use a cylindrical pipe with a single hole (see figure 6). It is an oversimplified
model of a clarinet body that, according to Benade [1], only considers the role
of the first open hole and ignore the others. From a synthesis point of view, such
a model seems also sufficient. Indeed, modeling a tonehole lattice with dynamic
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states different for each tonehole would probably require the introduction of
random variables in order to simulate the behavior of human fingers acting
simultaneously on multiple keys, and is out of the scope of this paper. In the
same way, in order to keep the simplicity of the model, localized losses and non
linearities induced by sharp edges or air jets, as well as radiation impedance are
ignored here.

Considering electro-acoustical analogy and applying Kirchhoff’s law we obtain
equations 2 and 3, with pi the pressures, ui the flows.

Fig. 6. Cylindrical pipe with a single tonehole. L1, L2, rt, ht and rclari are the geo-
metrical parameters of the pipe. pi, ui are the acoustic pressures and flows.

p1 = p2 = p3 (2)

u1 = u2 + u3 (3)

The tonehole of a clarinet is considered as a small cylindrical bore. Its input
impedance Zt, seen from inside the air column and using an ideal open-end
termination (the radiation impedance vanishes), is defined as a function of the
geometry of the hole (equation 4) with rt its radius, ht its length, St = πr2

t

its surface, kt(ω) its wave number (complex-valued in order to include losses),
defined classically by assuming that the radius is large in front of the boundary
layers thicknesses.

Zt(ω) =
ρc

St
j tan(kt(ω)ht) (4)

The dimensionless input impedance, denoted Ze(ω), of the whole pipe is a
function of the radius of the hole and of the impedances Z1(ω)=jZ0 tan(k1(ω)L1)
and Z2(ω) = jZ0 tan(k2(ω)L2) corresponding respectively to the two bores of
lengths L1 and L2 (equation 6), the characteristic impedance of which is Z0 =

ρ.c

Sclari
, where Sclari = πr2

clari is the surface of the main bore. Again, one assumes

that rclari is large in front of the boundary layers thicknesses. The termination
impedance Zs(ω) of the first part of the bore is made of a parallel combination
of the impedances of the tonehole and the second part of the bore. Consequently
Zs(ω) can be written as equation 5:

Zs(ω) =
1

1
Zt(ω) + 1

Z2(ω)

(5)
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The dimensionless input impedance Ze(ω) is obtained classically, using the
transmission line theory:

Ze(ω) =
Zs(ω)

Z0
+ j tan(k1(ω)L1)

1 + j Zs(ω)
Z0

tan(k1(ω)L1)
(6)

The closing of the hole is simulated by reducing linearly its radius rt from a
given value corresponding to the totally open hole position to zero. The input
impedance Ze(ω) is computed for each values of the radius. One can notice that
when the tonehole radius equals zero, Zt is infinite and Zs = Z2. Consequently,
Ze corresponds to the impedance of a single pipe of length L1 + L2. Figure 7
shows how the impedance of a single hole pipe (L1 = 0.43m and L2 = 0.05m,
corresponding to a pitch variation from G2 to F2) changes as a function of
the radius of the hole. During the closing the equivalent pipe length is vary-
ing continuously from L1 to L1 + L2. Each horizontal line corresponds to a
given value of rt from 3.5mm to zero. The lengths L1 and L2 have been cho-
sen in order to correspond to the geometry used for the experiments presented
in section 2.

Figure 7 clearly shows that the frequencies of the impedance peaks are sliding.

Fig. 7. Variation of the input impedance of a single tonehole pipe as a function of the
hole state. The closing is simulated by reducing linearly the hole radius. Opened: the
radius rt is 3.5mm. Closed: the radius is zero. The radius of the bore rclari is 8mm.

Figure 8 shows how the inharmonicity of the impedance peaks changes with
respect to the tonehole state. This inharmonicity curve is calculated according
to equation 7:

τinharm(n) =
f(n)

(2n − 1)f0
(7)
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Fig. 8. Inharmonicity of the input impedance peaks obtained for different tonehole
states. Totally open tonehole: diamond markers; half-closed tonehole: circle markers;
totally closed tonehole: square markers; perfect harmonicity: dashed line.
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Fig. 9. Normalized amplitude and frequency variations of the first three peaks of the
input impedance of a single hole pipe as a function of the tonehole state from totally
open to totally closed. The closing is simulated by reducing linearly the hole radius.
Peak 1: solid line; peak 2: dotted line; peak 3: dashed-dotted line.

where f0 is the frequency of the first peak (fundamental) and f(n) is the fre-
quency of the nth peak. Consequently, the value of the inharmonicity is equal
to one when the nth harmonic and the fundamental are totally harmonic. The
kind of structure we are considering, made of a side branch appended to an
uniform tube, is unlikely to have exactly harmonic partials. This is why one ob-
serves a more important inharmonicity when the tonehole is on an intermediate
state. The inharmonicity observed in the totally opened or totally closed states
is caused by the dispersion included in the wave numbers k1−2(ω).

Figure 9 shows the variations of the amplitude of the sliding impedance
peaks. One can observe a decreasing phase followed by an increasing phase.
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Inharmonicity combined with lower amplitudes of the peaks has for consequence
that the instrument can be more difficult to play, as it as been noticed by
Dalmont and al. [2].

Despite its simplicity, this input impedance model is able to reproduce the
main phenomena that appear during the tonehole closing : frequency glissando
induced by the glissando of the first impedance peak and negative effects on the
ease of playing induced by the decrease of the amplitudes of the impedance peaks
and the loss of harmonicity. In the next section, we will include this impedance
model into a simplified model of the functioning of the whole instrument.

3.2 Full Instrument Model

We consider a classical dimensionless physical model of the functioning of a sim-
plified clarinet-like instrument (see e.g [8]), and its real-time oriented version as
proposed in [6]. A description of the method for bores of more complex geome-
try can be found in [7]. In addition to the impedance described in the previous
section (equation 9), the model includes an other linear part that models the
reed displacement as a pressure driven mass-spring system (equation 8) and
a non-linear part, coupled with the linear parts, that uses the Bernoulli flow
model to describe interactions between the flow and the pressure in the mouth-
piece (equation 10). The parameter γ is the ratio between pressure inside the
mouth of the player and the static beating-reed pressure. ζ, proportional to the
square root of the reed opening at rest, characterizes the whole mouthpiece and
takes into account the lip position and the section ratio between the mouthpiece
and the resonator. x is the reed displacement, ue the acoustic flow in the mouth-
piece, pe the acoustic pressure in the mouthpiece, and pext the external pressure.
ωr = 2πfr and qr are respectively the circular frequency and the quality factor
of the reed.

1
ω2

r

d2x(t)
dt2

+
qr

ωr

dx(t)
dt

+ x(t) = pe(t) (8)

Pe(ω) = Ze(ω)Ue(ω) (9)

ue(t) =
1
2
(1+sign(1−γ+x(t)))sign(γ −pe(t))ζ(1−γ +x(t))

√
|γ − pe(t)| (10)

pext(t) =
d

dt
(pe(t) + ue(t)) (11)

The input impedance Ze(z) (equation 12) is defined in the discrete time do-
main from equation 6 by the use of the discretization schemes presented in [6].
D1, D2, D12 are the propagation delays corresponding respectively to the length
L1, L2 and Ltot = L1 + L2, and z = exp(jω/fe), where fe is the sampling
frequency. This formulation gives analytically the values of each coefficient of
the digital filter as functions of the geometry of the bore and are consequently
changing each time the value of rt is changing.
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Ze(z) =

k=N0∑
k=0

bckz−k +
k=N1∑
k=1

bcD1kz−D1−k

1 −
k=N0∑
k=1

ackz−k −
k=N1∑
k=0

acD1kz−D1−k

...

...

+
k=N2∑
k=0

bcD2kz−D2−k +
k=N12∑

k=0

bcD12kz−D12−k

−
k=N2∑
k=0

acD2kz−D2−k −
k=N12∑

k=0

acD12kz−D12−k

(12)

Similarly, in the discrete time domain, equation 8 becomes equation 13, where
ba1, aa1 and aa2 are the coefficients of the single mode digital reed model. The
digital impedance filter (equation 12) corresponds to equations 17 and 15, where
V is a function of the past samples (pe(n) = ue(n)+V ). The non linear coupling
(equation 10) is solved analytically by equation 16.

x(n) = ba1pe(n − 1) + aa1x(n − 1) + aa2x(n − 2) (13)

W =
1
2
(1 + sign(1 − γ + x(n))ζ(1 − γ + x(n)) (14)

V = f(aci, bci, ue, pe, D1, D2, D12) (15)

ue(n) =
1
2
sign(γ − V )(−W 2 + W

√
W 2 + 4|γ − V |) (16)

pe(n) = ue(n) + V (17)

The sequential use of equations 13, 14, 15, 16, 17 computes at each sample n
the values of the variables x(n), pe(n) and ue(n), solutions in the digital domain
of the discretized problem corresponding to equations 8, 9 and 10. The exter-
nal pressure pext(n) corresponding to equation 11 is computed by a difference
between the sum of the pressure and the flow at sample n and at sample n − 1.

Figure 10 shows the spectrogram of the external pressure during the tran-
sition. The radius of the tonehole is reduced linearly from 0.35mm to 0mm
(L1 = 0.43m and L2 = 0.05m). The time of the closing is 0.7 seconds which cor-
responds to a slow closing. The main effect of the closing, namely the glissando
is clearly reproduced. One can notice that, due to the nonlinear coupling with
the reed, this glissando is different from that of the first peak of Ze(ω). Moreover
considering a simple linear reduction of the tonehole radius logically leads to a
transition the shape of which is different from the one experimentally observed
on figure 1.
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Fig. 10. Spectrogram of the external pressure signal obtained by simulating the clos-
ing of the tone hole by reducing linearly its radius from totally open to totally closed.
Opened: the radius rt is 3.5mm. Closed: the radius is zero. The radius of the bore is 8mm.

A drawback of this dynamic closing model comes from its numerical complex-
ity. Indeed, with this model, in a real-time implementation, the coefficients of the
difference equation linking the output pe(n) to the input ue(n), that corresponds
to the impedance part of the full model, require to be modified each time the
radius of the tonehole is modified. Such a computation cost can become incom-
patible with a real-time implementation. This is why, in the section 4, we propose
a simplified method that approximates the effect of a continuous modification
of the input impedance induced by a tonehole closing.

4 Cross-Fade Model

Though the simplified model of a dynamic closing presented in the section 3 gives
relevant results, its computational cost might be incompatible with a real-time
sound synthesis. Here, we present an alternate method which is compatible with
real-time and gives perceptively relevant results. During his study dealing with
trumpet modeling, Vergez [15] worked on the problem of the dynamic closing of
valves. The problem is similar since one aims at modelling the smooth transition
from a length L1 to a length L1 + L2 with the introduction of a small side-
branch at intermediate states. Vergez chooses to model the closing of a valve
by considering simultaneously two resonators during the transition time. He
takes into account the change of the effective length by interpolating in the time
domain between the two reflection functions corresponding to the two different
lengths of the bore. The reflected wave value is an average between the two
pressures calculated considering the two reflection functions (the first one for the
length L1, the second one for L1+L2). For partially open holes, van Walstijn and
Campbell [16] divide the tonehole volume into an “opened part” and a “closed
part”. The first one behaves as an inertance and the second as a compliance. The



14 P. Guillemain and J. Terroir

impedance of the hole is a function of the impedances of the extreme positions
and a parameter defines the ratio between opened and closed states [17].

The discrete-time model we are interested in is based on a digital impedance
filter the coefficients of which are explicitly expressed as functions of the geo-
metrical parameters of the instrument. Following similar lines, we interpolate
between two filterings corresponding to two different bores, assumed to be per-
fectly cylindrical. In this case, the difference equation linking pe(n) to ue(n) for
each bore is given by:

pe(n) = ue(n) + V (18)

and V is given by: V = −a1ue(n − 1)− b0ue(n − D)+ a1pe(n − 1)− b0pe(n − D)
To the initial geometry (bore of length L1) corresponds Vi. To the final geom-

etry (bore of length L1 +L2) corresponds Vf . During the time of the closing, an
interpolation between Vi and Vf is performed. A new value of V , directly func-
tion of the values for opened and closed positions is defined as V = ViR+VfRinv,
yielding:

pe(n) = (R + Rinv)ue(n) + ViR + VfRinv (19)

R and Rinv are two time varying functions that define how this cross-fade is
performed. They satisfy the relation: R + Rinv = 1.

From this time domain formulation, we obtain the equivalent formulation
in the frequency domain as defined in equation 20, where a1i, b0i, Di are the
coefficients and delays corresponding to the length L1 and a1f , b0f , Df those
corresponding to the length L1 + L2.

Z(z) =
R + Rinv − R(a1iz

−1 + b0iz
−Di) − Rinv(a1fz−1 + b0fz−Df )

1 − R(a1iz−1 − b0iz−Di) − Rinv(a1fz−1 − b0fz−Df )
(20)

Figure 11 shows the equivalent input impedance obtained with this interpola-
tion procedure. Each horizontal line corresponds to a fixed value of R and Rinv,

Fig. 11. Variation of the input impedance of a single tonehole pipe obtained by simu-
lating the closing of the hole by a linear cross-fade
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and the vertical axis corresponds to a linear decrease of R from 1 to 0. One can
notice that the impedance peaks are sliding during the cross-fade.

Figure 12 shows the variations of the heights of the first three impedance
peaks. Similarly with the tonehole reduction method, there is a decreasing phase
followed by an increasing phase.
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Fig. 12. Variation of the amplitude of the first three impedance peaks of a single
tonehole pipe obtained by simulating the closing of the hole with a linear cross-fade.
Solid line: harmonic 1; dashed line: harmonic 2; dashed-dotted line: harmonic 3.

The impedance obtained by interpolation and by reduction of the radius of the
hole (cf. figure 7) are different. This is not surprising since the interpolation is a
very crude approximation. Nevertheless, they share the same important features,
since the sliding of the peaks and the behavior of their amplitudes are well
reproduced. Moreover, in the synthesis context of this paper, we are interested
in the result of the whole model. Let us consider now the external pressure
obtained from interpolation of impedances. Figure 13 shows the spectrogram
of the external pressure signal obtained by a linear interpolation of impedances.
One can notice that the pitch changes non linearly with respect to R and that the
level of the harmonics reaches a minimum value around R = 0.5. This behavior
of the spectrum of the pressure is in good agreement with that obtained with
the simplified physical model presented in figure 10. Nevertheless, one can notice
that the amplitude and frequency variations obtained by reducing the hole radius
and by interpolating linearly are different. This difference makes it necessary to
adjust the shape of the function R, by making a correspondence between a given
radius of the tonehole rt and an equivalent value of R [14].

Figure 14 shows how the amplitudes and frequencies of the first harmonics
are changing with respect to rt. From the variations of the frequency of the first
harmonic shown in figure 7 and obtained by reducing linearly the radius of the
tonehole, one can associate to any given value of rt yielding a given frequency of
the first harmonic, the value of R that leads to the same frequency of the first
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Fig. 13. Spectrogram of the external pressure signal of a single tonehole pipe obtained
by simulating the closing of the hole by a linear cross-fade
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Fig. 14. Amplitude and frequency variations of the first two harmonics of external
pressure signals obtained by reducing the tonehole radius (solid line) and by cross-fade
with and adapted function R (dotted line). Results are presented as a function of the
tonehole state from totally open to totally closed.

harmonic. We focus on this criterion since we are mainly interested in reproduc-
ing the perceptive glissando effect of the closing. As shown on figure 14, the use of
the adjusted function Ropti (and the “inverse” function Roptiinv ) leads to similar
frequency variations of the first two harmonics either for the cross-fade method
or for the radius reduction method, and in similar variations of the amplitude
of the first harmonic. Moreover, this shape is in accordance with the frequency
variations of the first peak of the input impedance Ze of the single hole pipe (see
figure 9), which is directly related to the fundamental frequency of the sound.

In normal playing conditions, transitions between notes are obtained by vary-
ing continuously rt over a few milliseconds. It is worth noticing that though this
interpolation model constitutes a crude approximation of the physical model



Dynamic Simulation of Note Transitions in Reed Instruments 17

presented in section 3, the validity of the physical model itself is questionable
in transient situations from both physical and signal processing points of view,
since the input impedance (or the reflection function in a wave variable model)
and its time-domain equivalent are defined from fixed geometry and stationary
hypotheses.

In order to check the validity of the use of this simple interpolation method, we
shall compare in the next section the transitions it generates with those obtained
from the experimental signals, presented in section 2.

5 Comparison Between Experimental and Simulated
Signals

Let us now compare the behavior of the glissando in frequency and the perceptual
parameters estimated on experimental signals in section 2 and on simulated
signals obtained both by reduction of the radius of the tonehole and by the
interpolation method.

Frequency of the Harmonics
We first consider the frequency variations. Figure 15 shows how is changing the
fundamental frequency for a measured signal, a simulated signal obtained by
reduction of the radius of the tonehole and a simulated signal obtained through
the interpolation method. One can notice that the frequency variation of the
simulated signal obtained by reduction of the radius of the hole is in good agree-
ment with the frequency variation of the measured signals (as it has been shown
before, it is independent of the musician or the closing technique). Since the in-
terpolation model gives frequency variations comparable with that obtained by
reducing the radius of the hole, the interpolation method is suitable to reproduce
the glissando effect.
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Fig. 15. Variations of the frequency of the first harmonic of a measured external pressure
signal (solid line), simulated signal obtained by reducing the tonehole radius (dashed
line) and by cross-fade with an adapted function R (dashed-dotted line). Results are
presented as a function of the tonehole state from totally open to totally closed.
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Loudness
The second important parameter is the loudness. Figure 16 shows the normalized
variations of the loudness of two measured signals (closing by bringing closer or
by sliding the finger) and two simulated signals (by reduction of the radius of
the tonehole or by interpolation between impedances). One can notice that the
loudness of the signal obtained by radius reduction method gives a shape which
is in agreement with measures. The interpolation method gives a similar result
and the “valley” shape is well reproduced. It is obvious that there is a difference
with the measurements but the main phenomenon (reduction of the loudness
during the closing) is well produced.
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Fig. 16. Variations of the loudness of measured and simulated external pressure sig-
nals. Solid line: measured signal obtained by bringing closer the finger to the hole;
dotted lines: measured signal obtained by sliding the finger on the hole; dashed-dotted
lines: simulated signal obtained by interpolation method; dashed lines: simulated signal
obtained by radius reduction method.

Brightness
As it has been previously mentioned the brightness of the sound can be charac-
terized by the spectral centroid. The study of measured signals has shown that
the centroid has a typical behavior during the tonehole closing. The measures
have also shown that the value of this parameter depends on the control para-
meters. This makes it difficult to compare the behaviors of measured signals and
those of simulated ones. In the context of this study what we are interested in
is to obtain a similar behavior of some perceptive parameters for measured and
simulated signals. Let us observe how the spectral centroid of simulated signals
is evolving for each method. Figure 17 shows the variation of the centroid ob-
tained with the tonehole reduction method (left part) and with the cross-fade
method (right part). Similarly to the loudness, the behaviour of the brightness is
in accordance with the measurements. Both methods provide centroid variations
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Fig. 17. Variations of the spectral centroid of simulated external pressure signals. Left
part: simulated signal obtained by radius reduction method. Right part: simulated
signal obtained by interpolation method.

similar to those observed on the measured signals : a fall of the value during the
closing. The interpolation method provides a fall of the centroid value which can
be considered as accentuated compared to that obtained by the radius reduction
method. On the other hand one can notice that with the radius reduction method
the final value of the centroid is lower than it could be expected but one has to
keep in mind that those simulations are obtained for constant control parameters
values.

6 Application to the Tenor Saxophone

Up to now we have considered the clarinet case, the shape of which can be con-
sidered as cylindrical. Because of its simplicity and its low computation cost
the cross-fade method can be used for more complex geometries. In woodwind
instruments, the two main bore shapes are cylindrical and conical. Consequently
the next step of this study is to apply the cross-fade method to an instrument the
shape of which is conical. Modeling the geometry of a conical bore - side-branch -
conical bore is difficult and the application of the radius reduction method would
be incompatible with a real-time application. In order to check wether the sound
transition is similar in the cases of a cylindrical or a conical bore, measurements
have been made on a tenor saxophone Yamaha YTS-475. A musician has been
asked to close or open a tonehole (only by bringing closer the key to the hole)
for several fingerings, several speeds and several playing conditions (from piano
to forte). On the other side, signals have been synthesized using the cross-fade
method. It allows to compare the behavior of the real instrument (frequency glis-
sando, loudness, brightness) and the behavior of the simple model for a conical
shape. The shape of the function R defining how the cross-fade is performed has
been adjusted by making a correspondence with the average frequency variation
of the first harmonic of 17 measured signals. Figure 18 displays a saxophone-like
bore input impedance computed according to the model described in [7].
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Frequency of the Harmonics
The main effect we are interested in is the frequency glissando. Figure 19 shows
the frequency variations for measured and simulated signals. As we previously
mentioned the shape of the interpolation has been adjusted by making a corre-
spondence with the average frequency variation observed on measured signals.
One can notice that the behavior is very similar for the measurement and the
simulation.

0 500 1000 1500
Frequency (Hz)

Fig. 18. Saxophone-like bore input impedance
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Fig. 19. Frequency variation for a measured tenor saxophone sound (solid line) and a
signal obtained by simulating the closing of the tonehole with the cross-fade method
(dotted line)

Loudness
Measurements have shown that the loudness behavior can vary a lot with the
playing conditions. Playing the tenor saxophone piano or forte induces a very
different loudness behavior. For a piano playing, the loudness level is falling
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during the closing, for a forte playing it does not evolve significantly. Figure 20
shows the variations of the (normalized) loudness of two measured signals (piano
(dash-dotted line) and forte (solid line)) and one simulated signal (dotted line)
(cross-fade method). One can notice the role of the playing conditions on the
loudness variations. Moreover the shape of the simulated curve is typical of what
we can observe with the cross-fade model (independently of ζ or γ values). The
loudness variations obtained by simulating the tonehole closing with the cross-
fade method is not as reliable as we could expect (it’s independent of the control
parameters) but it does not have an absurd behavior. The simulated loudness
variations can be considered as an average behavior. We point out that during
the closing the “equivalent” impedance given by equation 20 is not controlled
since, for the sake of simplicity, one assumes that R+Rinv = 1. Obviously during
the transition the loudness and the brightness could be controlled by choosing a
different relation.
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Fig. 20. Variations of the normalized loudness for two measured signals: forte (solid
line) and piano (dashed-dotted line) and a signal obtained by simulating the closing of
the tonehole with the cross-fade method (dotted line)

Brightness
The third main feature we are interested in is the brightness. As we previously
said the study of brightness variations is made by studying the spectral centroid
variations. Figure 21 shows the variations of the spectral centroid for a measured
signal (left part of the figure) and for a simulated signal (right part). One can
notice that the two behaviors are similar : there is an obvious reduction of the
spectral centroid frequency during the tonehole closing. Thus the brightness is
reduced in the two cases. Since the spectral centroid value depends on the control
parameters, one has to focus on the shape of the variations rather than on the
value corresponding to the two extreme tonehole states.

One can conclude that the simple cross-fade method is also efficient for a more
complex geometry such as a conical one.
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Fig. 21. Variations of the spectral centroid for a measured tenor saxophone signal (left
part) and a signal obtained by simulating the closing of the tonehole with the cross-fade
method (right part)

7 Conclusions and Perspectives

In this paper, we have presented a very simple interpolation model for the simu-
lation of dynamic transitions between notes on a reed instrument in a real-time
synthesis context. The transition laws are adjusted in order to correspond to a
single hole resonator model or to measurements. The results of the simulation
show a good agreement with the variations measured on natural sounds obtained
in normal playing conditions. In particular, it has been observed that, on a real
clarinet, the loudness, brightness and pitch variations during a transition requir-
ing the closing of a single tonehole are, up to a time dilation, independent of
the transition speed. This allows a simple piloting of the transition model with
the velocity of the closing. The validity of the model has been checked for more
complex bore geometries (e.g. conical bores) using natural saxophone sounds.
The model can be improved through analytic formulations of the frequency and
amplitude variations of the first impedance peak during the closing in order to
obtain analytic expressions of the interpolation functions. Thanks to experiments
with an artificial mouth and impedance measurements, these methods will be im-
proved under more calibrated playing conditions. The use of this transition model
for various wind instruments can be found at: http://www.lma.cnrs-mrs.fr/∼
guillemain/index.html.
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Abstract. The Brass project aims to deliver software virtual musical
instruments (trumpet, trombone, tenor saxophone) based on physical
modelling. This requires to work on some aspects of the playability of
the models so that they can be played in real time through a simple
keyboard : better control of the attacks, automatic tuning, humanization.

1 Introduction

Sound synthesis by physical modeling has been developping for more than thirty
years. Various models and digitizing techniques are available (see [1] and [2]
for a complete review), and commercial applications are proposed since the
mid-ninetees1.

The goal of the Brass project is to propose software virtual musical instru-
ments (based on physical models) playable in real-time and controlled through
a simple keyboard. Target instruments included in the project are the trum-
pet, the trombone, and the tenor saxophone2. This project has been done at
Ircam3 and Arturia4 and is supported by the riam5 network. This paper is
not a review of the whole project, but focuses more specifically on the strategies
implemented to improve the playability of the models. Therefore, the physical
models considered as well as numerical techniques used for the implementation
are not described in this paper.

For a sound synthesis software to achieve the characteristics of a virtual in-
strument, two key features are needed :

1 A well known example is the Yamaha VL1 keyboard based on digital waveguides
developped at CCRMA, Stanford University.

2 Which is obviously not however a brass instrument.
3 Ircam people involved sorted by name : A. Almeida, R. Caussé, X. Rodet, N. Schnell,

P. Tisserand, C. Vergez (ext. coll. LMA).
4 Arturia people involved sorted by name : F. Bourgeois, Y. Bonnefoy, N. Bronnec,

J. Germond, X. Oudin, F. Paumier, N. Pianfetti, S. Simmermacher.
5 http://www.riam.org/riam/

R. Kronland-Martinet, T. Voinier, and S. Ystad (Eds.): CMMR 2005, LNCS 3902, pp. 24–33, 2006.
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– The first one is obviously the sound synthesis technique, which has to be
flexible enough to provide natural variations of the sound when input para-
meters (controlled by the player) are altered. To do this, physical modeling
has been chosed. The models are briefly discussed in section 2.

– The second key feature, which is more highlighted in this paper, is the playa-
bility of the software application. Indeed, significant effort has to be provided
in order to transform a physical model (even if it has the intrinsic ability to
produce typical sound effects of a given instrument) into an easily playable
virtual instrument. In fact, unlike in a musical acoustics study, where squeaks
and slangs are welcome since they highlight the ability of the model to re-
produce typical features of the instrument, they have to be avoided here.
Indeed, the main goal of the project is to immediately make the keyboardist
feel like if he knew how to play well the instrument. Moreover, the player is
supposed to have no other midi controler than those provided by a standard
mid-range synthesizer. Therefore, significant efforts were put on the fine tun-
ing of the model, so that each key pressed on the keyboard makes the model
play the desired note (see section 3). This is far from being a straightfor-
ward task with a physical model. Finally, in order to overcome limitations
generated by the control of a model through a keyboard, an additional layer
of (higher level) control has been added between the keyboard output and
the model input (see section 4). This can be seen as an attempt to propose
gesture models for attack, vibrato, legato . . .

2 Physical Modelling

2.1 General Principles

The physical models used in the Brass project rely on a formulation of the
physical functionning principles in term of nonlinear delay differential equations
(popularized for sound synthesis of self-sustained musical instruments by [3]).
The trumpet and the trombone models have been mainly developped during
the Phd thesis of the first author (see [4], [5] for a general description, and
[6], [7] for precise aspects of the models) starting from the physical description
given (among others) by Elliott and Bowsher ([8]). The saxophone model has
been developped during the ongoing Phd of André Almeida on reed instruments
(similar modelling principles applied to the oboe can be found in [9]). However,
this paper is more specifically devoted to the trumpet and the trombone.

2.2 Modified Model for the Lips

The classical single-mass lips model for the trumpet and the trombone has been
slightly modified in order to obtain (and control) more typical brass sounds dur-
ing the attack transient. Since the computational cost had to be kept as low
as possible, the additional complexity of a two-mass model ([10], [11]) or even
a single-mass model with two degrees of freedom ([12], [13], [14]) could not be
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afforded. Moreover, since the steady-state behavior of the model was satisfying,
the modified model differs only in the first milliseconds of the sound, during the
transient.

The new model proposes to take into account the influence of the tongue at
the attack onset. In any brass instrument, the note starts when the tongue stops
to stick to the lips and let the path free for the air flow. In spite of poor agreement
between brass players on the precise tongue movement, its critical influence on
the transient characteristics is well acknowledged. In this study, while the tongue
itself has not been modelled, its influence on the lips dynamics is considered: the
quick removal of the tongue is supposed to generate a disturbance force on the
mass of the form:

F = F ′
l e

−α′
lt sin ω′

lt (1)

Equation (1) is applied until time6 t∗ � −1
α′

l
ln 10−3

F ′
l

. The particular expression of
F may obviously be thought as the impulse response of a second order damped
system. However, equation (1) should be seen as an additional way of controling
the attack characteristics (depending on values of F ′

l , ω′
l and α′

l) rather than a
refined physical model deriving from a rigorous analysis. However, from the point
of view of perception, the flexibility added might be associated with the different
types of attack transients a brass player can produce using various tongue tech-
niques (from a soft attack without any use of the tongue, to very pronounced
attacks). In figure 1, two attack transients (note G4) are synchronized to high-
light the influence of F (equation (1)) both on the length of the attack and on
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Fig. 1. Comparison of two transients (note G4): green one corresponds to F ′
l = 0 in

(1), red one corresponds to F ′
l = 3, ω′

l = ωl, α′
l = 350, t∗ = 22ms

6 t∗ corresponds to the time where the amplitude of the force F as descreased by a
factor 1000 until t = 0.
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the shape of the enveloppe. Note that the additional force (equation (1)) is only
taken into account until t∗ = 22ms in figure 1.

2.3 Control Parameters of the Model

Finally, the input parameters for the trumpet and the trombone models are
given in table 1. They are divided into two groups : the tuning parameters
and the control parameters. Values of the parameters inside the first group are
automatically determined (see section 3). On the contrary, parameters inside the
second group can be mapped by the player to various controllers.

Table 1. Input parameters of the model for the trumpet/trombone

Tuning parameters

Name Description
ωl Resonance frequency of the lips
αl Damping of the lips

lb
Length of the bore (i.e. valves position for the trum-
pet, and length of the slide for the trombone)

{
Ai, Ωi

}
i=1,2

Amplitude and Frequency of the additional modes in-
troduced to compensate for the truncation of the re-
flection function (see [4] for details)

Control parameters

Name Descrition
pm Mouth (or blowing) pressure
λ Amount of losses within the bore of the instrument
ε Amount of randomness injected in the air flow
Δωl, Δαl Variations around ωl and αl

3 Automatic Tuning of the Physical Models

3.1 Problem Statement

Physical models discussed in section 2 have proved to be well adapted for sound
synthesis. However, the trumpet and the trombone models are particularly diffi-
cult to tune. Indeed, as it is well known since [15], the lips modal characteristics
(ωl, αl) influences significantly the frequency of the auto-oscillation.

Therefore, in order to avoid tedious adjustments (by hand) of the tuning
parameters (listed7 in the upper part of table 1), the tuning is considered as an
optimization procedure : we are looking for the parameter values which make
the model produce the sound whose fundamental frequency f0 matches at best
a target frequency f̂0 . This comes to minimize a cost function (see sections 3.2
and 3.3). A general flowchart of the tuning method is presented in figure 2.
7 For certain notes, the length of the bore is determined by the tuning process in

order to allow fine adjustments of the playing frequency, just as a trumpet player
does with the tuning slide.
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Generate new candidate values of
the tuning parameters P of the model

the tuning parameter values
Generate a sound according to

PHYSICAL MODEL

Evaluation of
the cost function

SOUND ANALYSIS

Estimation of the sound f0

and the indice of periodicity

A

B
Target sound frequency f̂0

SIMULATED ANNEALING

Fig. 2. Basic principle of the automatic tuning procedure by numerical optimization.
The dotted squares marked A and B correspond to section 3.3 and 3.2 respectively.

3.2 Cost Function

The cost function C is a measure of the discrepancy between the target response
f̂0 and the response f0 of the model to candidate parameter values P proposed
by the optimisation process (detailed later in section 3.3). Therefore, the cost
function C may have many different expressions. The most intuitive expression
of C depending only on the square or the absolute value of (f0 − f̂0) could not
be retained. As a matter of fact, among all possible parameter values, only few
of them make the model produce periodic sounds. Therefore, the cost function
has to be penalized by a periodicity criteria. This is done by using a mono-
phonic version of the fundamental frequency extractor recently developped at
Ircam ([16]) which also calculates a confidence rating of the proposed f0 (be-
tween 0 and 1), further used in this paper as a periodicity descriptor dp (the
more dp is close to 0, the more we penalize the cost function). Finally the cost
function defined by (2) proved to be efficient to match the target f̂0 , while
avoiding quasi-periodic and non harmonic sounds (see figure 3 for a graphical
representation).
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C
(
f̂0, f0

)
= e3

(
1 − e3(dp−1)

)
+ |f̂0 − f0| (2)

A probabilistic technique has been chosen to minimize the above cost function
(see section 3.3), because it appeared to have many local minima. As a matter
of fact, as far as its minimization is concerned, variables of the cost function are
the tuning parameters (and not f0 and dp as shown in figure 3).

Fig. 3. Graph of the cost function defined by equation (2) and contour plot highlighting
the exponential dependance of the cost function on the periodicity descriptor dp

3.3 Minimisation of the Cost Function Through Adaptative
Simulated Annealing

Generic Simulated Annealing. Simulated annealing technique (sa in the
following) has been developped to statistically find the best global fit of a non-
linear constrained non-convex cost function. This method is derived from the
Metropolis method ([17]). Using notations introduced in section 3.2, the aim is
to find the global minimum of C

(
f̂0, f0

)
defined by equation (2). The principle

of sa is recalled below (see for example [18] p444 for details):

1. Choice (random or not) of an initial candidate P0 leading to a sound fre-
quency f00 .

2. Choice of an initial temperature8 T0

3. While temperature Tl > Tend,

8 For historical reasons, the scheduling in sa is based on the analogy with temperature
cooling.
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– Do the following steps m times
• Generate randomly a new candidate P̃k+1 (sound frequency f̃0k+1),

neighboor of Pk (sound frequency f0k
) according to the probabil-

ity density gTk
(practically the neighborhood area decreases with

Tk)
• Calculate ΔC

(
f̂0, f0k

, f̃0k+1

)
� C

(
f̂0, f̃0k+1

)
− C

(
f̂0, f0k

)
• If ΔC

(
f̂0, f0k

, f̃0k+1

)
≤ 0, P̃k+1 is automatically accepted as Pk+1

• If ΔC
(
f̂0, f0k

, f̃0k+1

)
> 0, P̃k+1 is accepted as Pk+1 with the prob-

ability hTk

(
ΔC

(
f̂0, f0k

, f̃0k+1

))
. Otherwise Pk+1 = Pk .

• k ← k + 1
– Annealing schedule : decrease temperarure (Tl+1 < Tl) according to the

chosen cooling law
4. The last state Pend is statistically the best fit, i.e. C

(
f̂0, f0end

)
is the global

minimum of function C.

Extension to an Adaptative Algorithm. Since computation time is often a
limiting factor for probabilistic search of a global fit, we decided to take advan-
tage of a refined sa algorithm developped by L. Ingberg and called vfr (Very
Fast Re-annealing, [19]). This algorithm introduces adaptative (or re-annealing)
capabilities to allow an automatic adaptation to changing sensitivities in the
parameter space. Moreover it provides an annealing schedule for temperature T
decreasing exponentially in annealing time k. As explained in [19], this is faster
than more classical annealing schedules such as the Cauchy annealing (corre-
sponding to the scheme T (k) = T0/k) and much faster than the Boltzmann
annealing (where T (k) = T0/ lnk).

3.4 Results and Discussion

Optimization results: The trumpet/trombone models have been tuned on three
octaves. For a particular note, around thousand candidates have to be generated
by the vfr process. The range of research for each parameter (i.e. the extrema
values allowed) didn’t appear to be of critical importance. Therefore, large ranges
were generally used, so that they could be kept unchanged for many adjacent
notes. The quality of the result given by the optimisation process is evaluated
through real time playing of the model. If needed, the optimization process
is launched again while advantaging the exploration of the parameter space
against the rapidity of convergence. This is done by increasing the number of
candidatesgenerated at each temperature step (parameter m in the algorithm
described in section 3.3).

Implementation / Computation time: Practically, the flowchart described in fig-
ure 2 implies code coupling, between the model itself, the f0 calculus and the vfr
process. This can be very time consuming if the computation time is not kept
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in mind as a priority. Therefore the three standalone codes have been melt into
a single code (function calls prefered instead of data files exchange). The tuning
of a note lasts about 13 minutes (for 1000 iterations) on a low-end computer
(Athlon xp 1800+ running at 1533Mz with 768Mo of memory).

Ease of use: The optimization process presented above is far from being straigth-
forward to use. In fact, several parameters of vfr have to be adjusted (initial
temperature, number of parameters generated at each temperature, parameters
of the cooling law . . . ), which requires some experience and is definitely problem-
dependent.

Current research: Different notes produced by the model (tuned with the
f0 -based optimization) may sound with timbre discrepancies. This is not very
surprising since many parameters combination lead to the same sound frequency
(but not necessarily with the same timbre). Therefore, current research is fo-
cussed on including timbre descriptors in the optimization. Flowchart presented
in figure 2 remains unchanged, but instead of the only fundamental frequency,
other timbre descriptors are considered ([20]). This is expected to provide a way
of having the parameters tuned so that the model reproduces at best, not only
a target f0 , but a target sound (possibly played by a real soloist).

4 Other Improvements of the Playability of the Model

Physical models of wind instruments are preferably played in real time through
breath controllers. The use of a keyboard as a playing interface generate addi-
tional limitations that may harm the playability. To adress this issue, a layer
of control is added between the player and the model inputs. Thus, direct con-
trols of the player are used to parameterize higher-level precompiled gestures for
several playing modes (listed below).

Attack: At noteon, the evolution in time of the mouth pressure pm is imposed
and parameterized by the midi velocity. A very simple model of variation (at-
tack/decay/sustain) has been chosen. A similar evolution of parameter ε may
also be imposed during the attack.

Vibrato: The lips tension is imposed (through the tuning parameter ωl) by the
mapping. However a vibrato may be generated by a modulation of ωl. The am-
plitude of the modulation is zero during the attack, and after a delay starts to
increase with time. Note that an additional modulation of noise amount (para-
meter ε) has also been retained.

Legato: When a key is pressed while at least one other key has not been released,
it is supposed that the player wants the model to play legato. The time of
transition between the two notes is made dependent on the midi velocity of the
last note played. The modelling of the transition itself (change in valve position
or not depending on the two notes) is described in [4].
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Humanization: In order to avoid long-lasting notes to sound unnatural (because
of fixed parameters), “humanization” is introduced for some parameters (typi-
cally ωl and pm) as random fluctuations around values given by the mapping or
the player. Exagerated fluctations can be used to evoke the playing technique of
a beginer.

5 Conclusion

The work presented here is part of the Brass project whose aim is to propose
to keyboardists virtual trumpets, trombones and saxophones based on physical
modelling. This paper focusses on playability enhancement when playing virtual
brass instruments through a keyboard. To summarize, from a pragmatic point
of view, the issues adressed , we could say that attention was paid to improve
attacks punch, automatic tuning of the model, and the “lively” character of the
sound produced. The following sound examples9,10 highlight these efforts, since
they are played live on a midi keyboard (without any post-modification of the
midi inputs).

We think that studying gestures of real brass players would be of high interest
to control physical models and to achieve better sound synthesis results. This
will hopefully be done in near future.

This paper is focussed on the playability aspects of the virtual instruments.
Therefore many aspects of the project are not even mentionned in this paper. The
resulting software will be available around December 2005 and will be demon-
strated at the conference. Four virtual instruments are expected to play at the
same time on recent personal computers (Apple or PC).

Sound examples can be heard on the commercial webpage for this project
http://www.arturia.com/en/brass/brass.php.

Acknowledgements

The authors would like to thank Xavier Rodet and Axel Röbel for providing
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Abstract. The pureCMusic (pCM++) framework gives the possibility to write a 
piece of music in terms of an algorithmic-composition-based program -also 
controlled by data streaming from external devices for giving expressiveness in 
electro-acoustic music performances- and of synthesis algorithms. Everything is 
written following the C language syntax and compiled into machine code that 
runs at CPU speed. The framework provides a number of predefined functions 
for sound processing, for generating complex events and for managing external 
data coming from standard Midi controllers and/or other special gesture inter-
faces. I’m going to propose pCM++ as open-source code. 

1   Introduction 

In order to put at work the mapping paradigm and the expressive facilities offered by 
the gesture interfaces we realized at computerART project of CNR-Pisa for composing 
and for performing with expressiveness interactive computer music [3], [5], [6], [7], 
[8], [9], [13] I started to write a very basic library of functions for sound processing. 
In the long run the library became a very efficient, stable and powerful framework 
based on pure C programming, that is pure-C-Music or pCM.  

This programming framework gives the possibility to write a piece of music in 
terms of synthesis algorithms, score and management of data streaming from external 
interfaces. The pCM framework falls into the category of the embedded music lan-
guages and has been implemented using the Xcode C language compiler i.e. the na-
tive, free, development environment available on the MacOS X operating system of 
Macintosh computers. 

As a result a pCM composition consists of a XCode project assembled with all the 
necessary libraries able to implement in realtime the typical synthesis and processing 
elements such as oscillators, envelope shapers, filters, delays, reverbs, etc. The com-
position itself is a C program that mainly consists of the Score and Orchestra parts. 

Everything here is compiled into machine code and runs at CPU speed. 
The Object Oriented paradigm is used for defining instruments in terms of class 

declaration then instanced as many times as wanted. It’s a good practice to collect in 
the Orchestra section all the necessary instruments and to add together the result of 
the computation of every instrument is use. 
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For that the name of the framework is pCM++. At the end, pCM++ is a realtime 
programming music language that in respect to the other textual languages such as 
CSound [1] and SuperCollider [4], has two main advantages: there is no need to learn 
a new language (just because this is the C language itself) and what's more, it is much 
faster (more than 10 times) in respect to those quoted because pCM++ entails compi-
lation rather than interpretation.  

1.1   Past and Future 

I have already presented previous implementations of pCM at other conferences [10], 
[11], [12]. The new version here introduced runs as host of Xcode compiler (Ma-
cOSX). It is easily portable to other platforms and also provides a general purpose 
console interface the composer can use for setting up synthesis algorithms, for moni-
toring in/out audio signals and MIDI messages.  Printout alerts and others basic  
interaction features (not oriented to live performance) are also provided. 

The pCM++ framework has been written in Standard C++ [2] and makes use of the 
PortAudio and PortMIDI libraries commonly used as open-source and multi platform 
libraries able to manage audio signals and MIDI messages in real time. As a conse-
quence it can be easily ported to other platforms such as Windows and Linux.  

My aim is towards releasing pCM++ as open source code to be used and enriched 
by other composers and researchers. 

2   Composition 

A pCM++ composition consists of an Xcode-C-compiler project properly packed 
using all the necessary standard C libraries and the new original library that puts the 
framework at work.  This library consists of a number of functions called elements  
(at the moment more than 50) able to implement in realtime the typical synthesis  
and processing building blocks such as oscillators, envelope shapers, filters, delays, 
reverbs, etc.  

A composition is organized as an usual C program where the main program opens 
and closes all the necessary audio and MIDI message channels and calls in sequence 
the movements that make part of the composition. The default name of the main pro-
gram is Score and is intended as an algorithm (from simple to complex) which also 
may include sequences of note-events as requested by scored music.  

The Orchestra that generates the audio signal is defined as a separate void and 
consists of two main parts: the declaration of the elements (such as oscillators and 
filters) used for defining the synthesis algorithm, and the synthesis algorithm itself. 

The orchestra, as expected, usually consists of more than one instrument. 
The Score is the program part, which triggers and feeds the instruments by assign-

ing proper values to common variables.  
Here and in the following, the courier font is used for example programs and 

bold names are used to indicate reserved keywords of pCM. This is an example of 
a very simple composition: 
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float  vol,freq; //common variables for communication  
                 //between Score and Orchestra 
 
DefOrchestra  Ther() {  //name of the orchestra 
  sinosc sinT=newOsc(); //declaration of an oscillator 
  BeginOrch              
   float alfa=vol*Sinosc(sinT,freq); 
   outLR(alfa,alfa);   
  EndOrch 
}  
void Score() { 
  float hor,vert; 
  InitpCM 
  Orchestra=Ther; // The Ther orchestra is activated 
  Movement 
     GetMouse(&hor,&vert);   
   freq=100.+hor*1000.;    
     vol=vert; 
  EndMovement 
  ClosepCM    
} 

 
An Orchestra is identified by a name and referenced when necessary. All the nec-

essary variables are defined following the C language syntax. Values are assigned to 
variables by instructions that make part of the program defined in the Score section, 
that is the composition, or by data coming from the external. The Orchestra uses 
common variables for getting parametric values computed by the Score. 

The synthesis algorithm consists of the code placed in the block BeginOrch- 
EndOrch that also includes the outLR(.,.) element.  It is possible to define as 
many as wanted orchestras but only one at a time can be active. The Score activates 
an orchestra with the instruction Orchestra=orchname. 

The Score is the composition: it initializes pCM, activates the current orchestra, 
open (if necessary) MIDI channel, etc.; usually a composition is made up of a number 
of movements each defined by the block Movement-EndMovement. The block is 
intended as loop that exits under certain conditions (here not examined). 

The two functions run as two concurrent processes at different rates. The Orchestra 
function is automatically (by a callback mechanism) called at each audio buffer 
switch and since an audio buffer of 256 samples long and a 44100kHz sampling rate 
are used, the Orchestra function is called every 5.8 msec. The rate of the Movement 
depends on the computer performance and on the complexity of the composition. 
Then it is not predictable but, as experienced, it is fast enough to complete all the 
realtime functionalities as required. 

3   Toolkits 

A composition makes use of the functions belonging to the original library which puts 
the pCM framework at work at both Score and Orchestra levels. This library consists 
of three different groups of functions named toolkits, each one devoted to specific 
tasks: DSP, Events and Command toolkits. 
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1. DSP toolkit deals with the synthesis and processing of sound and groups  
elements such as oscillators, envelope shapers, filters, delay lines, reverbs, etc. 
(Orchestra level).  

2. Events toolkit deals with the generation and the scheduling of events including 
timing and management of external events (Score level).  

3. Commands toolkit manages messages coming from and sent to the Midi inter-
face, controls the activation of the computer built-in CD player, allows to  
directly record onto memory the audio signal and to store it onto disk as .aiff or 
.wave file, provides miscellaneous mathematical functions (Score level). 

 
Each toolkit gathers together functions of the same kind and shares with the others 

groups the same approach for defining and using the basic pCM elements. An element 
is a building block such as an oscillator, a delay line, a filter, an envelope, etc., used 
for assembling synthesis algorithms;  pCM elements are declared in the same way 
ordinary C variables (e.g. int, long, float, bool) are declared.  This is the 
list of the types provided, so far,  by pCM:  
 
oscillator, pluck, noise, pulse, envelope, slider, delay-
line, lpfilter, hpfilter, bpfilter, reverb, delay, sample, 
scheduler… 
 

All types are low-case keywords and the elements are usually defined at the be-
ginning of an Orchestra definition and of the Score. What follows is a quick overview 
of the main elements belonging to the pCM-toolkits as provided so far. 

3.1   DSP Toolkit 

This is the main toolkit that consists of those functions, which generate and process 
the audio signal therefore used inside an Orchestra.  
 
Remarks. Computation of audio signals is performed in floating point mathematics so 
that variables and parameters must be defined as float.  Values are normalized at 1.0 
so that oscillators range between -1.0 and 1.0, envelopes range between 0.0 and 1.0, 
the overall signal sent DACs ranges between -1.0 and 1.0.  

Time and durations are given in seconds.  
 
§  An oscillator is defined with the type  
 
oscillator myosc=newOsc(phase);  
and used in Orchestra  as follows: 
val=Osc(myosc,freq);   
 

The Osc(myosc,freq) function returns the proper value for oscillator myosc 
at each sampling tick and stores it into the val variable (previously defined). The 
first parameter of Osc identifies the oscillator by the name given when defined; the 
second parameter specifies the current frequency of the oscillator, that can be given as 
a numeric value, a variable or a complex expression. The phase of the oscillator can 
be initialized when defined. 
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§  In order to create a delay line, the delayline type is used. The instruction   
 
delayline mydelay=newDelay(12.5);  
 

defines a delay line identified with the name mydelay and allocates a memory space 
corresponding to a duration of 12.5 seconds. There exist two main functions for using 
a delay line with the expected way of working: 
 

PutDelay(delayname,value); and   
val=GetDelay(delayname); 
 

§  An envelope requires more information, necessary for describing its shape in terms 
of breakpoints: the enum type facility of C is used for this task by defining a list of 
numbers arranged as the number-of-break-points followed by the sequence of break 
points given as couples of values (time,value). Then the envelope is created in this 
way: 
 

float  ev={3, .0,.0, .5,1.0, 1.2,.0);     
envelope myenvel=newlinEnv(ev); 
 

The newlinEnv(ev) function allocates the necessary memory, computes all 
the values for the envelope by linearly interpolating the break points and returns the 
pointer to the envelope then stored in myenvel.   It's also possible to use exponential 
interpolation using newexpEnv(.); in this case break-points must given in triplets, 
third value referring to the mode how exponential curves must be computed.   

The main functions which manage envelopes are trigEnv(envname) used at 
Score  level, which starts the scanning of the envelope  and  Env(envname) used 
in Orchestra   that returns the current value of the envelope.  
 

§  Sound samples are defined and loaded with 
 
sample mysample=LoadSample(filename.wav); 
 

As seen for envelopes, there exist two main functions that manage samples: 
trigSample(sampname); which starts the scanning of the sample and used at 
Score  level,  and Sample(sampname); which returns the current value of the 
sample (used in Orchestra).  

§  Filters are defined with no particular specification but their behaviors: lowpass, 
highpass, bandpass, resonator, etc.   

lpfilter  mylpfilt=newlpFilter(); 
hpfilter  myhpfilt=newhpFilter();... 
 

In  Orchestra they are used  as follows 
  

va=LPFilter(mylpfilt,signal,stopbandl);  
vb=HPFilter(myhpfilt,signal,stopbandh); 

 

§  A reverb is defined with  reverb myrev=newReverb();  

and used in Orchestra as expected: 

currval=Reverb(myrev,signal); 
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§  A further element makes part of the DSP toolkit which is not precisely involved in 
sound synthesis or sound processing but it is a rather useful tool for overall controls: 
this is Fader(fname).  A fader is created and initialized as follows: 
 
fader  myfader=newFader(initval);  
Then it is setup with wanted values by 
setFader(myfader, when, dur, start, end); 
and used with   currVal=Fader(myfader); 
 
The value of  when  is the precise moment (see 3.2 paragraph) when the fader is 

planned to start moving; dur  tells how much time the fader takes for going from 
start  to end.  A fader is a general purpose facility that can be used, for instance, -
for controlling the general volume of an instrument or of the whole orchestra, -for 
gradually introducing the amount of a sound effect such as chorus, flanging, reverb, 
etc.. A fader can be used at both Score and at Orchestra levels.  

 
Final comment.  What here reported is only a small but significative excerpt out of  
the DSP Toolkits developed so far: -there exist other generators such Pluck (based on 
the Karplus-Strong algorithm), Pulse, Noise, Addosc (based on a predefined  
harmonic-based look-up-table): -envelopes can be defined also as Attack-Sustain-
Release envelopes and the Envasr(envnm) and ReleaseEnvasr(envnm) must 
be used; -audio samples can be played with different speeds using Sample-
speed(sampname,speed); -delay lines may be read  inside the line with  
TapDelay(gap); -two other fundamental functions make part of this Toolkit which 
perform signal transmission to DACs and signal input from ADCs: 
outLR(left,right) and inLR(&left,&right). 

3.2   Events Toolkit 

The pCM framework has been implemented mainly bearing in mind the algorithmic 
approach to composition and the interactive gesture controlled live performance of 
electro-acoustic music paradigm. That entails the program that describes the composi-
tion issues events in terms of timed sets of values, which affect the instruments de-
fined in the Orchestra. Since everything happens in real time under the control of the 
running program/composition, events are treated with reference to the global variable 
Time  that holds the updated realtime clock value. The Resettime  directive forces 
Time  to 0 so that it reports (in seconds) the time elapsed since the last Resettime.  
Testing Time can generate events such as a note-triggering. However there exists a 
much formal and efficient approach for managing events consisting of the so called 
Scheduler mechanism. 

A Scheduler, in the pCM framework, is an element which gives the possibility of 
enqueueing timed events in order to be taken into consideration later at the right time. 
As usual, it's necessary first to define a Scheduler element: 

 
scheduler mysched=newScheduler(evnum); 
 
The  Event(schedname,dur,value)  function enqueues the event defined 

as duration-value couple, into the specified scheduler. This function is usually  



40 L. Tarabella 

invoked at Score level and can also be affected by data coming from the external. 
Once the events are placed in the Scheduler queue, the instruction 

 
if(nextEvent(schedname,&retval)) do_something(retval); 
 

is used for checking whether or not the time duration of the current event is finished. 
If yes, nextEvent returns true and retval  has a valid value of the next event 
that will be used in the instruction do_something  that usually trigs an instrument. 
GetMidi(&cmd,&chn,&val1,&val2); is a boolean function which returns 

false  if no MIDI message has been received;  otherwise it returns true  and the  
cmd, chn, val1, val2  variables report the proper values.  

3.3   Commands Toolkits 

This toolkit groups those functions that work as commands and directives for  
the composition. Their names specify what they do.  The following four commands 
are usually placed in the main program: AudioOpen, MidiOpen, Midi-
Close, AudioClose. ClickToStart  and ResetTimer are usually 
placed, where requested, in the movements. The following commands allow to play 
and to control  audio tracks from the CD driver: 

 
CDtrackSearch(tracknum);  
CDplay  and  CDstop  
CDvolume(vol);  
 
Record("filename”); starts to record the global audio signal (as sent to the 

DACs) onto memory with no loss of quality and save it as a file onto the Harddisk 
with the specified name  and  .aiff or  .wav  extension format. 

3.4   Expandability 

Since toolkits are defined as collections of ordinary C language functions and are 
clearly visible by the user, they can be upgraded as wanted and/or requested. It's a 
good practice, however, to follow the same approach I used in developing the current  
state of the three toolkits in order to be consistent with all that already existent. 

4   Instruments as Objects 

The Orchestra computes the audio signal by processing the instructions which  
implements the instruments as defined by the composer using the DSP toolkit functions.  

More than one instrument can be defined inside an orchestra, the number depend-
ing on their complexity and the power of the computer in use. In any case, when 
many instruments are defined in an Orchestra, conflict problems coming from the 
names of variables, delay lines, filters and envelopes in use may arise, specially when 
putting together previously programmed instruments.  

In order to avoid these problems the object-programming paradigm has been intro-
duced for defining and using instruments. Besides, as a result, a cleaner layout for the 
program-composition is reached.  
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An instrument is then defined as a class object and declared, that is, instanced in 
the movement as many times as required. This is done using the very formal criteria 
of Object Oriented programming. The following is an example of a simple instru-
ment based on the pluck element with some other additional elements that enrich 
its functionality: 

 
class  Stringks { 
   private: pluck     string; 
       envelope  envks; 
       envelope  envlpf; 
       delay     rit; 
       lpfilter  filtks;  
       bool      created;  
       float     vala,vax,vaxrit; 
       float    valf,pitch; 
   public:  Stringks(); 
       void      trig(float freq); 
       float     tick(); 
       virtual   ~Stringks(); 
}; 
 
The Stringks class is defined as public object that includes both the private section 

where the elements and the variables are defined and the public section where the 
methods are declared. Usually, in the class instrument declaration, three are the meth-
ods declared plus one for destroying the instanced objects. These methods do the 
following jobs: -the constructor that actually creates the object and does everything 
necessary in order to the object works properly such as to create delay lines and enve-
lopes, to load samples, etc.; -activates (trig) the synthesis algorithm and, finally,  
-performs (tick) the synthesis algorithm which actually computes the signal. Then 
the methods are given. 
 
void Stringks::Stringks () {  
  string =newPluck(); 
  rit    =newDelay(0.05); 
  filtks =newLPFilter();  
  float  st[]={3,.0,.0,1.2,.01,1.0,1.5, 2.,.0,.0}; 
  float  fl[]={3,.0,.0,1.2,.01,1.0,1.5, 2.0,0.0,0.0}; 
  envks  =newexpEnv(st); 
  envlpf =newexpEnv(fl); 
} 
void Stringks::trig(float frq) {  
  pitch=frq; 
  trigPluck(string,pitch);   
  trigEnv(envks); 
} 
float Stringks::tick(){ 
  vax=Env(envks)*Pluck(string,pitch)+getDelay(rit);  
  putDelay(rit,vax); 
  vala=LPFilter(filtks,vax,(Env(envlpf)*1000)); 
  return vala; 
} 
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Remarks. Basically, sound is here generated using the well known Karplus-Strong 
algorithm; however it is also controlled by an envelope shaper for better control on 
the sound coda; the signal is also added to a delayed copy of itself and then filtered 
with a variable-cut-frequency lowpass filter. It's now possible to define an instrument 
for an orchestra the same way that the primitive pCM elements are declared. The 
only difference consists in putting a * pointer before the name which identifies the 
instantiated object as required by Object Oriented programming: 

 

Stringks *mystring=new Stringks; 
 

It's worthwhile to invoke soon the setup method in order to initialize the just cre-
ated instrument. From now on, the trig method (with the wanted frequency given as 
parameter instead of through common variables) will be used at Score level and the 
tick method will be used at Orchestra level for getting the computed signal. 

 

In the following Score example some of the features previously introduced are 
used: a scheduler for composing a semitone scale and two faders,  the first one 
for rising the global volume and the second one for panning sound from left to right. 
The instrument corda  is defined as an instance of the Stringks  class just de-
fined.  Delay and panning effects are treated at orchestra level rather than in then 
object-instrument: it’s up the composer to put here effects or to include them in the 
instrument definition. Notes are issued using nextEvent(.,.,.). 
 
Stringks *corda=new Stringks; 
DefOrchestra KSorch() {         
 BeginOrch 
 val   = Fader(fadin)*corda->tick(); 
 signR = val*Fader(panpot); 
 signL = val*(1.-Fader(panpot)); 
 outLR(signL,signR); 
 EndOrch 
} 
void  Score(); { 
  float      note,semitone; 
  scheduler  scale(15); 
  fader      fadin; 
  fader      panpot; 

 

  Orchesta=KSorch; 
  for(int k=0,semitone=440.;k<=12;k++) 
     {Event(scale,0.5,semitone);semitone=semitone*1.059;} 

 

  InitpCM 
  ResetTime 
  Movement 
 StartFader(fadin, 0.,2.,0.,1.); 
 StartFader(panpot,0.,6.,0.,1.); 
 if(nextEvent(scale,&note)) corda->trig(note); 
  EndMovement 
  ClosepCM 
} 
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The composition is now ready and when Score is activated a scale from A3 to A4 
with the string timbre lowpass-filtered and panning from left to right, is generated. 

5   Conclusion 

The pCM framework has been efficiently used for composing and performing many 
pieces of music under the control of the gesture tracking systems and devices realized 
at computerART project at ISTI/CNR in Pisa.  The pCM framework has been imple-
mented first for Macintosh computers. The current version here reported is the result 
of the experience I gained using the previous versions. As declared, I'm going to port 
the work for other platform and put it on the Net as a freeware  open-source code 
music language. 
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Abstract. A digital clarinet played by a human and timed by a
metronome was used to record two playing control parameters, the breath
control and the reed displacement, for 20 repeated performances. The
regular behaviour of the parameters was extracted by averaging and the
fluctuation was quantified by the standard deviation. It was concluded
that the movement of the parameters seem to follow rules. When remov-
ing the fluctuations of the parameters by averaging over the repetitions,
the result sounded less expressive, although it still seemed to be played
by a human. The variation in timbre during the play, in particular within
a note’s duration, was observed and then fixed while the natural tempo-
ral envelope was kept. The result seemed unnatural, indicating that the
variation of timbre is important for the naturalness.

1 Introduction

Naturalness is a term that is regularly used in the context of speech and music
synthesis, although a clear definition is difficult to formulate. Ternström [1] has
suggested a layered transport model of communication, be it musical or spoken,
where in the present case a musical message at the first layer may be converted to
a script of musical phrases in the second layer, then to a sequence of notes with
certain attributes, further to gestures (e.g. movements of the bow of a violin)
that are finally converted by the instrument to sound waves in a last layer.
The sound waves are transmitted to the listener after being distorted by room
acoustics and possibly by microphones and loudspeakers. Another important
aspect is of course the layer of the listener’s perception, but we will not be
concerned with this here.

By considering naturalness in this way, one can suppose that a defect in
any layer may cause the sound to be perceived as unnatural. As an example,
in synthesis of musical instruments, lack of naturalness seems to occur either
at the gesture level, for instance when a control interface cannot sufficiently
capture the player’s gestures, or at the instrument level, due to a poor instrument
or radiation model. In general, for the purpose of music and speech synthesis,
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naturalness may be defined as the attribute that makes the listener think that
the sounds are produced by a human. Rodet [2] has referred to this definition
in the context of synthesis of the singing voice, and Nusbaum et al. [3] asked
their subjects in a listening test whether the vowel they heard was produced by
a human or by a computer, thus also adhering to this interpretation of the term
naturalness.

An important issue concerning naturalness and sound synthesis is related to
the fact that at present a computer cannot mimic the human speech and music
performance in a convincing way, unless it copies the performance. Even when
a natural sound is distorted during transmission, for instance by the telephone
where higher frequencies are lost and noise is added, we do not doubt that the
speaker is human. This example shows that an important part of the naturalness,
as defined above, is contained in the control of the sound source rather than in
the sound itself. We therefore search for cues that are important for rendering
a music performance natural, in the sense that the listener thinks that it is
performed by a human and not by a computer program.

A number of studies have already been conducted on performance rules defin-
ing the performer’s deviations from musical scores. The rules may be divided
in two main categories [4]: differentiation rules linked to duration, pitch, and
intervals, and grouping rules linked to the way the performer gathers tones into
melodical gestures, subphrases, and phrases. To our knowledge, no rules have
been established that take into account variations in timbre during the notes.
This is necessary for self-sustained instruments, such as the clarinet or the vio-
lin, as the sound is also controlled after the note onset. Hence, a new family of
expressive parameters contributes to the performance and gives new degrees of
freedom that act on the naturalness.

In the present study we take a closer look at the variation of such parameters
and their relation with the naturalness in the clarinet case. More precisely we
divide the naturalness at the gesture and instrument layers into a systematic and
a random part. In fact, even a musician who controls his instrument to perfec-
tion cannot perfectly reproduce the exact same musical phrase. There are muscle
vibrations, small variations in the player’s lip position, phase variations of waves
in the resonator and much more. It should be mentioned that the GERMS model
[5] goes further and divides a performance into five principal expressive compo-
nents: Generative rules, Emotional expression, Random variations, Motion (i.e.
gesture), and Stylistic unexpectedness (hence the acronym). The systematic part
should encompass all but the random variations of this model.

We address the systematic and random variations in the control parameters
during each note and verify our hypothesis that these parameters follow rules
in a similar way as do the variations between notes. We also link the varia-
tion in timbre, here represented by the spectral centroid, to the perception of
naturalness.

Finally, “[Sound x]” refers to sound examples on the CMMR Internet site:
http://www.lma.cnrs-mrs.fr/˜cmmr2005/
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2 Sound Preparations

In order to test this hypothesis, it is important to be able to measure the control
parameters employed by the musician as well as parameters that the musician
does not control, such as room acoustics. Although a real acoustical instru-
ment would be preferred for studies on naturalness, an electronic instrument
was chosen since it allows fine measurements of the control parameters as well
as reinjection of these parameters into the synthesis model.

The physics of the clarinet has been studied for a long time, and simple
relations describe quite realistically its sound production [6, 7, 8]. Without giving
a detailed description of all quantities involved, the model can be summarized
by three equations simulating the reed motion, the pipe resonances, and the
nonlinear interaction between the reed motion and the pipe resonances. The
reed motion is modelled as a spring with mass and damping:

μ
d2y

dt2
+ r

dy

dt
+ ky(t) = p(t) − P, (1)

where P is the mouth pressure, y the oscillating reed displacement from equi-
librium, and p the oscillating pressure inside the mouthpiece. The resonances of
the pipe may be described by its input impedance

Z̃(ω) = jZc tan(ωL/c − jα
√

L), (2)

which relates p and u to the pipe length L. The Bernoulli equation may be
used to couple the two equations together by the oscillating volume flow u of air
through the mouthpiece:

u(t) = w(y(t) + H)

√
2(P − p(t))

ρ
, (3)

where H is the equilibrium height of the reed opening. This system of equations
can be solved in many ways, but the main point is that the model provides the
musician with three control parameters: the length of the pipe L, the blowing
pressure P , and the equilibrium reed opening H .

This or a similary physical model is implemented in the Yamaha VL70-m vir-
tual acoustic synthesizer [9] although we do not have access to the true contents
and real-time implementation. The synthesizer may be piloted by various con-
trollers, and we have here used the clarinet-like Yamaha WX5 MIDI controller.
The fingering determines the note to play and thus the length L of the pipe, the
blowing pressure P is captured as the MIDI breath-control parameter BC, and
the reed opening H is represented by a MIDI “general control” parameter that
we will call the (equilibrium) reed displacement RD. The latter is controlled by
the lower lip against a non-oscillating reed. In addition, the reed displacement
may also give a pitch bend, i.e. a slight variation of the pitch, but this was discon-
nected in the present study and is disregarded in the following. The musician’s
actions on the WX5 are transmitted by MIDI parameters to the VL70-m, which
synthesizes the sound in real time based on a model similar to the one described
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and depending on the variations in the fingering, the reed displacement, and the
blowing pressure.

This setup gives the musician a realistic, albeit limited, control similar to a
clarinet and thus offers some expressive control of the timbre of the sound. While
the relation between the physical quantities P and H is not directly related to
the MIDI parameters BC and RD, and not knowing exactly how they are treated
in the synthesizer, we will only consider the MIDI parameters (scaled to range
from zero to one) in the following.

A 20-second theme of the melancholic song “Plaisir d’amour” (Jean-Paul Mar-
tini 1760) [Sound 1] was played 20 times by an amateur clarinetist, who was asked
to play all repetitions as equally as possible, with the same interpretation and
expression. A metronome was used to facilitate comparison between the 20 rep-
etitions. The MIDI data (breath control, reed displacement, note-onset timing
with note value, and metronome timing) for each performance was saved to a
text file, and the synthesized sound was recorded to a WAV file. The data were
processed in Matlab.

3 Systematic and Random Variations

Figure 1 shows the MIDI parameters BC and RD for two of the 20 versions
played [Sound 2, 3]. The vertical gray lines represent the note onset timings
while the vertical dotted lines indicate the metronome ticks. The figure shows
that BC and RD vary in a regular way, but with some variations from repetition
to repetition. The systematic variation will survive an averaging over all the
repetitions, while the random variations can be quantified by the standard de-
viation. A few precautions are necessary, however. First, all performances must
be synchronized, which was facilitated by the use of the metronome. Second, the
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Fig. 1. Variations of the breath control BC (black lines) and the reed displacement RD
(gray lines) for two different performances. The vertical lines mark note onset (gray)
and metronome (dotted) timings.
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Fig. 2. The systematic and random changes of (a) the breath control BC and (b) the
reed displacement RD represented by their normalized mean (black lines) and standard
deviation (gray lines). The vertical lines in (c) show the note-on timings (black lines),
their standard deviations (gray lines), and the metronome timings (dotted lines).

curves should be normalized note by note so that level variations between the
repetitions do not contribute to the standard deviation.

The notes were separated by their note onset timings and shifted to the aver-
age timings. Normalization was performed individually for each note: The para-
meters were divided by the time average for each note, e.g. BCi = 〈BCi(t)〉 for
the blowing pressure. We ignored values below 25% of the maximum BC and
below 50% of the maximum RD in order to avoid taking into account pauses
and bumps between the notes. Then the normalized curve was averaged over all
repetitions i = 1, . . . , 20 and finally remultiplied by the mean of all BCi for this
note. The standard deviation was calculated in the same way by normalizing by
BCi. In this way, the final normalized standard deviation should only include
the random variations within each note, i.e. the variations in curve form and not
variations in the general level of the notes.

The mean and standard deviation of BC and RD are presented in Figure 2a
and b, respectively, while the standard deviation of the note-on timings are
shown as vertical gray lines around the solid mean lines in Figure 2c.

The mean of BC shows that there is a systematic variation of the breath
control during the play. The long notes have a peak at the start and decrease
gradually towards their end. The breath control falls to a minimum for a short
moment before the next note is attacked. In the more rapid parts in the middle
of the second and third phrases, however, the movement of the notes shows a
different shape, especially the short ones: there is also a peak at the end of the
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note. Additionally, the crescendo in the beginning of the last phrase is manifested
by smaller slopes in the long notes and a higher blowing pressure in the middle
of the phrase. These characteristics indicate that a set of playing rules may
be established. Although a part of the movement is necessary for a sound to
be produced, the musician has some liberty to express his intention through
manipulation of the control parameter.

This is also the case for the mean of the reed displacement RD, though this
parameter to a great degree is kept constant during the notes. The constant
reed opening is coherent with the playing technique that is most commonly
used among classical musicians. Although the playing style will depend on the
construction of the clarinet, changing the reed opening in the model presented
in Section 2 makes the brightness of the sound change [10]. In classical music,
it is in general desired that the brightness does not vary from note to note, and
on the described model, the reed opening may be used to compensate changes
in brightness due to variations in the note value and in breath control.

Another characteristic of the mean variation of RD is that there are two
deep bumps at the transition between each musical phrase. At these points the
player took his breath and thus relaxed the pressure on the reed for a moment.
Breathing is a natural part of a clarinet performance and may contribute to the
naturalness. The sound of breathing is not included in the synthesis, but it seems
evident for the listener where the player breathed. The pause might be sufficient
for the perception of natural breathing, but it is possible that the bumps in the
reed displacement affect the termination of the previous note and the attack of
the following, and thus contribute to the perception of naturalness.

It is interesting to note that playing the averaged parameters by the VL70-
m synthesizer gives a result that seems to lack some expressiveness [Sound 4].
However, it may still be considered natural in the sense that a human seems to
have played it, although maybe less motivated.

The standard deviation of RD is very small in this study. One reason for
this is the steady reed opening, but it is perhaps also due to the discretization
induced by the MIDI protocol, as was suggested in Figure 1. Whether the subtle
nuances that would result from a better MIDI resolution would be audible has
to be investigated in a future work.

4 Timbre Variations

Timbre is defined as the perceptual attribute that distinguishes two tones of
equal pitch, loudness and duration [11]. Furthermore, the possibility to vary the
timbre continuously during the play seems to be important for the musician
wishing to interpret the music expressively. It also seems that such continuous
variations of the timbre contribute to the naturalness of a performance.

In the following, we look at the variation of the brightness [12] of the sound,
which is a commonly used timbre descriptor. It is defined by

SCG =

∫ fc

0 |Ŝ(f)|fdf∫ fc

0 |Ŝ(f)|df
(4)
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Fig. 3. The spectral centroid of the sound resulting from the two repetitions in Figure 1
(in black and gray) together with the note frequency (dashed line). The corresponding
breath control BC and reed displacement RD curves are shown below, and dashed
vertical lines show note onsets.

where f and |Ŝ(f)| respectively represent the frequency and the magnitude of the
Fourier transform of the signal s(t). A continuous curve of the centroid frequency
was obtained by taking the short-term Fourier transform of 50 % overlapping
signal frames of 23 ms, weighted by a Hanning window. The cut-off frequency fc

was introduced because the VL70-m synthesis added noise to simulate blowing
noise, which was more pronounced for small blowing pressures. The noise dis-
turbed the calculations of the centroid and was removed by setting fc = 2500Hz.
Figure 3 shows the spectral centroid frequency for the two repetitions in Figure 1.

Without the noise, the correlation between the blowing pressure and the
centroid is obvious: The sound is brighter in the beginning of the long notes,
and darkens as the blowing pressure decreases. This is in accordance with the
“Worman rule” that the pressure wave is nearly sinusoidal for low excitation
energy (for weak blowing pressure), and that the higher harmonics become more
important as the player blows harder [13, 14]. The correlation with the reed dis-
placement RD was ignored in the present study as this parameter was mostly
constant during the notes.

The decrease in the centroid frequency was about 300Hz for the long notes,
accompanied by a decrease in energy (not shown here). We have verified by
listening that the change in the spectrum from the beginning to the end of these
notes was highly audible, even when compensating for the energy decrease. This
was done by extracting frames at several points from the beginning to the end
of a long note, removing the blowing noise by low-pass filtering, normalizing
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them to approximately the same loudness, and applying a pitch-synchronous
lengthening to make listening possible [Sound 5].

To show the effect of the timbre on the naturalness, we can force the timbre to
be constant during the play. This may be done by freezing BC and RD of one of
the repetitions to their mean values and feeding them together with the old note-
change parameters to the synthesizer. The result sounds static and unnatural,
much because also the intensity of this static performance was fixed [Sound 6].
We therefore forced the intensity to vary as for the original performance by
multiplying the signal by the envelope of the original. Although it might be
accepted that this was played by a human musician, the timbre did not vary
in a natural way [Sound 7]. We take this as an indication that variation of the
timbre is important for the perception of naturalness.

5 Conclusions and Further Work

The analysis of the 20 repetitions of the 20 s music performance shows that a
regular pattern of the two control parameters, breath control (BC) and reed
displacement (RD), can be extracted by averaging the performances, while the
variations between repetitions, considered the random part, may be quantified
by the standard deviation.

For the regular movement of the breath control, qualitative differences was
found between notes in the sequences of short notes and the calmer parts of the
melody. This suggests that expressive rules may be established for the movement
of BC. The reed displacement was found to vary little during each note, at least
within the MIDI resolution. This was coherent with the fact that the player had
been taught to play with a steady reed.

Because the parameters were normalized, the standard deviation mainly
showed the difference in shape between the curves of each note. When recon-
structing a performance from the averaged parameters, the result seemed to
lack some expressiveness compared to any of the 20 real performances. This
suggests that the parameter fluctuations quantified by the standard deviation
contribute to the expressiveness.

We have verified that variations in the breath control BC induce variations
in the timbre, at this stage only quantified by the spectral centroid. When fixing
the timbre, but keeping the temporal envelope of the signal, the result becomes
unnatural. This indicates that the variation of the timbre is important for the
perceived naturalness of the performance.

To elaborate on these preliminary results, we foresee to
– apply a more recent synthesis method [15] that is considered more realistic

and where more information on the timbre is available,
– use a professional musician and a larger repertoire of playing styles,
– effectuate a more detailed study of the rules related to the movement of the

parameters,
– employ other measures of the timbre, and
– perform listening tests to determine the importance of variation of timbre

and intensity as well as timing to the perception of naturalness.
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Finally, an interesting question is whether such rules depend on musicians
and on playing styles. If so is the case, recognition of musician and playing style
from MIDI data could be considered, and it should make it possible to use rules
obtained from analysis of MIDI performances to add expression and naturalness
to simple score data.
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Abstract. This paper introduces a visualization technique for music scores using
a multi-timescale aggregation that offers at-a-glance information interpretable as
the global timbre resulting from a normative performance of a score.

1 Introduction

A musical score using common music notation (CMN) does not convey a literal repre-
sentation of the sound it notates; rather, it contains the instructions necessary to produce
the sound. This realization from score to sound is a convoluted process which may be
simplified as follows: (i) pitch and duration are read from the vertically and horizon-
tally positions of symbols on a staff; (ii) associated markings—not always aligned to
the symbols they modify—inform us about loudness or articulation-dependent onsets;
and finally, (iii) other standard symbols and editorial practices—such as labeling staves
with instrument names—complete a minimal description of the sound at a particular
moment in the score. By aggregating this information at ever larger time scales this
data at the event level becomes integrated into higher level abstractions that serve as the
basis for global descriptors like: melodic contour, harmonic complexity, tonality, event
density, and intensity, etc.

With sufficient knowledge of CMN, one is thus able to derive from these raw graph-
ical symbols a good approximation of how a notated piece sounds as well as its overall
form and structure, even without actually performing it.

However, despite the standardization of CMN, various constraints may affect the
layout of this data, and our ability to parse it. Space limitations are an example of
such constraints, which may force changes in clef, octave markings or in the spacing
between symbols, all of which hinder the spatial relationship between a notated event
and its audible correlate.

We denominate this kind of mental picture of a score the ‘gross timbre information’
because it represents the compounded result of the actions by the performer(s) produc-
ing the notated sound. This paper introduces an approach for displaying this information
directly from the score using computational methods.
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1.1 Timbre Information Display

One way to simplify the display of gross timbre information is to use a spectrogram. A
spectrogram displays on the vertical axis frequency content in bands of width relative
to the sampling resolution—with the amount of energy in a band depicted by grayscale
or color values against time on the horizontal axis. The spectrogram’s axes are more
regularized than a musical score; however, larger musical structures other than the in-
stantaneous surface features are difficult to identify when viewing a spectrogram. Also,
spectrograms are limited in their potential to display timbre information due to their
emphasis in frequency content rather than more perceptual measures of timbre.

The physical parameters of timbre are usually reduced to a more compact set of
features which still describe the acoustical signal, some of them with perceptual rele-
vance. A partial list of such features which can be obtained from the time and/or spec-
tral domain would include: root-mean-square amplitude (power), bandwidth (spread of
the spectral energy), centroid (amplitude-weighted average of energy distribution), har-
monicity (how much does that energy falls along harmonic partials), density (how much
energy per critical band), skew (tilt toward low or high end of the spectrum), roll-off
(decay of high frequency partials), flux (between frames), among others.

Grey [2] worked with listeners in similarity experiments so as to determine the per-
ceptual correlate with some of these features, and he produced a timbral space dis-
playing the perceptual distance among notes produced by different instruments. Recent
work, as exemplified by Fujinaga [3], Brown [1], and others, uses a host of those features
to categorize timbre in an attempt to have computers recognize specific instruments.

1.2 Acoustic v. Symbolic

All of the approaches for timbral description, however, are derived from the acoustic
representation of a musical sound, therefore their results are somewhat different from
what can be specified by its symbolic representation, namely, the musical score.

Assuming that a score is the closest there is to the original compositional idea, then
we have to count every step from there to our ears as potentially transforming factors.
There are two major such steps in this path: performers and performance space; per-
formers add vibrato, tremolo, rubato, plus their ‘mistakes’, and the performance space
adds reverberation, and background noise. While many of these factors can be desir-
able, we sometimes end up with very different acoustic renditions of the same piece. As
with listening, whatever structural information that can be derived from this approach
becomes biased by the specific performance.

On the other hand, information derived from the symbolic representation is perfor-
mance agnostic and is a time-honored way of generating gross conceptualizations of
timbral content. However, this human-based approach is expertise-dependent and is
time-consuming. This presents issues of consistency and speed given variabilities in
CMN layouts, but it is very good to obtain information using different time-scales. In
other words, humans are able to change their analysis window-lengths ranging from
a single time event to the whole duration of the piece. The visualization techniques
presented below attempt to keep the advantages of the human-based approach, while
dealing with the shortcomings through a computer-based approach.
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1.3 Previous Work

Recent visualizations of timbre include Timbregram and Timbrespace [11]. Timbregram
is based on a time domain arrangement of the music (can be superimposed to a wave-
form display), with colors according to spectral features added to variable-size slices.
Timbrespace maps features to objects with different shapes, texture and color in a 2D
or 3D virtual space. Their goal is to facilitate browsing of a large number of sound files;
the latter also suggests groupings among different pieces. For an experimental study on
cognitive associations between auditory and color dimensions see [4].

The most direct predecessor of scoregrams are Craig Sapp’s Keyscapes, which show
tonality structure of a piece. In Keyscapes, the horizontal axis represents time in the
score, while the vertical axis represents the duration of an analysis window used to se-
lect music for a key-finding algorithm; each analysis window result is shaded according
to the output key. Independent analysis group together according to the relative strength
of key regions the composition. A more detailed description of the visualization ap-
proach is given in [9] and [10].

Scoregrams are also closely related to Dynagrams used by Jörg Langer, et al., to
study loudness changes on multiple-time resolutions graphs [7]. Both plot axes are sim-
ilar to keyscapes, but the vertical axis is inverted and the windowing method is slightly
different. Dynagrams are used to plot the change in loudness of a recording over time.
Crescendos are shown in shades of red, and decrescendos are shown in shades of green.
Local dynamic changes display rapid changes in loudness and global dynamic changes
can be seen emerging from this low level description of the loudness. Dynamic arches
are displayed visually from the interaction of the local and global dynamic descriptions
in the plot.

2 Implementation

To introduce the potential of scoregram we will display a single feature from the score—
pitch height—according different subdivisions. In these examples, images were auto-
matically generated from CMN data encoded in the Humdrum file format and analyzed
using command line programs from the Humdrum Toolkit [6] as well as custom-built
programs. Other symbolic representations would be just as good, such as MIDI files.

Meaningful visualizations are accomplished by mapping perceptually relevant fea-
tures into an equivalent dimension in an alternate domain. Visual elements, for exam-
ple, have a number of perceptually significant characteristics, such as shape, texture,
and color, which can be linked in the auditory domain; some of them, like timbre, are
also multidimensional. In this work we mostly explore color which has three perceptual
dimensions of hue, saturation, and intensity, and focus on the first of them: hue.

Mapping According to Register. A common association to the concept of timbre
in a single instrument is register. The pitch range of most orchestral instruments can be
summarily subdivided into three timbral zones each covering about a third of their range
(i.e. low, medium, and high). We can determine these thresholds manually (i.e. setting
a fixed note value at the boundary), or automatically (i.e.: at the 1/3 and 2/3 percentiles
in the events histogram). For the following scoregrams, activity in each gross timbral
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range is indicated by the colors red, green, and blue, respectively, and it is proportional
to the number of tokens from that class in the histogram, normalized by the largest token
value of either: (i) all colors across the time-window, (ii) all values of a single color, or
(iii) among the three values in that window. Finally, the normalized value becomes a
number in the Red-Green-Blue color space. Therefore, a piece with activity only in the
mid register would yield a green picture, while simultaneous activity in the extreme
registers, would yield magenta resulting from the combination of red (low register) and
blue (high register).

Fig. 1. Three scoregrams using range data. They illustrate a progression from strongly segmented
and contrasting range-derived structures to a more more homogeneous structure. These examples
are taken from J.S. Bach’s fugues (Nos. 14, 1, and 20 from left to right, respectively) in the
Well-Tempered Clavier, Book I. No.14 (left) has three clear sections where the medium and
high registers appear most prominently; No.1 (middle) shows more boundaries with no color
in particular becoming emphasized; No.20 (right) shows all colors with almost equal presence,
resulting in an early aggregation toward white at the top of the scoregram.

The images in Figure 1 show at-a-glance aspects about pitch distribution—by ex-
tension, register-dependent timbre quality— that are not obvious to the naked eye in a
musical score. At the bottom is the event level, quantized to include every 16th-note
duration on the score; this is done to keep equal score time for each token. Time goes
from left to right, from the beginning to the end. The size of the analysis window in-
creases from bottom to top, so that local features are shown below and global features at
the top, which represents the entire duration of the piece. The progression from bottom
to top is done in a logarithmic scale to match the way our perception of time works.
Each row is the same fraction larger/smaller than the previous row. It can be suggested
that the color at the tip of the dome is the characteristic gross timbre of the complete
composition.

Another useful piece of information displayed in the scoregram are the color bound-
aries where register changes occur. For example, the rightmost plot in Figure 1 suggests
that the resulting timbre is more uniform since no color becomes emphasized, whereas
in the first plot, the movement from mid to high register becomes a distinctive charac-
teristic of the piece.

Other Mappings. Any arbitrary subdivision of the instrumental range is possible.
For example, in a microtonal context, fine subdivisions may be necessary to augment
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the contrast of auditory variations. We have implemented subdivision into octaves—
suggested to be a general bandwidth for timbre invariance [5]—and into critical bands
for the note pitches (see Figure 2), a more perceptually uniform measure of frequency
with a width of about 1/3 octave each; it is generally assumed that timbre can be charac-
terized by the energy contents in each critical band [8]. Since these subdivisions produce
more than the three regions which could be conveniently mapped one of the three RGB
colors, we used a 2-D interpretation of the color space commonly known as the color
wheel, and assigned an angle equivalent to a distinct color wavelength to each one of
the 10 (v.g. octaves) or 24 (v.g. critical bands) tokens.

Fig. 2. A scoregram using critical band data from Barber’s Adagio for strings. A piano-roll rep-
resentation is appended to the bottom of the picture to depict the position of musical events.
There is a clear boundary at the point were the music reaches a climax in the high register, before
returning to the broad low and medium registers.

Figure 2 also demonstrate how more striking structural features will rise higher in
the scoregram plot. For example, in this plot the extremely high registration of all in-
struments about 75% of the way through the piece generate a strong band of contrasting
color to the other regions of the piece.

3 Discussion

A scoregram can have various interpretations. For example, a piece whose event dis-
tribution is homogeneous across the dimension in which it is measured (e.g. register)
may be perceived to be less dramatic than one with marked changes. The idea is that



Scoregram: Displaying Gross Timbre Information from a Score 59

if at the top of the scoregram we can see boundaries preserved from the bottom, or the
event-level, it means that the piece has contrasting sections.

Scoregram is extensible to any other types of musical features. We are considering
the mapping of multiple features to unused color dimensions. The basic strategy we
used is to plot three states in independent RGB values. Interpolating these values in
the Hue-Saturation-Intensity (HSI) space can be used to map dynamics, for example, to
saturation (e.g. how vibrant the color is), and articulation to intensity (e.g. how bright
the color is).

In the sample of music examined thus far, scoregrams proved useful for detecting
basic musical structures based on the musical features being examined. It may also
useful for establishing measures of similarity between repertoires and forms, or com-
parisons between the precisely observable acoustic event and its notated counterpart,
which would help to quantify a performer’s contribution to the music.
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Abstract. This paper introduces a possible approach for evaluating and predict-
ing listeners’ emotional engagement during particular musical performances.  
A set of audio parameters (cues) is extracted from recorded audio files of two 
contrasting movements from Bach’s Solo Violin Sonatas and Partitas and com-
pared to listeners’ responses, obtained by moving a slider while listening to  
music. The cues showing the highest correlations are then used for generating 
decision trees and a set of rules which will be useful for predicting the emo-
tional engagement (EM) experienced by potential listeners in similar pieces. 
The model is tested on two different movements of the Solos showing very 
promising results. 

1   Introduction 

“Io la Musica son, ch'ai dolci accenti 
So far tranquillo ogni turbato core, 

Et or di nobil ira et or d'amore 
Posso infiammar le più gelate menti” 

 
Alessandro Striggio for the libretto of Claudio Monteverdi “Orfeo” (Mantua, 1607). 

 
Whether music is actually able to induce strong emotions in listeners or not is still 

a topic on which the scientific community frequently debates without being able to 
find a common view, see, for example, [1]. Nonetheless the research on this topic is 
very lively all around the world and studies that tried to correlate several aspects of 
musical structures to emotional reactions have produced fundamental works, from 
the pioneering [2] to [3]  and, more recently [4] , while studies focusing on the 
analysis of musical performance aspects, such as tempo and articulation, are summa-
rized in [5].   

Lately, there have been also noteworthy experiments aimed at correlating emotion 
adjectives with acoustical cues focusing on different perception levels [6] and at 
measuring an emotional engagement of listeners while correlating the results with 
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video and audio data streams, like in [7], following the ideas and approach proposed 
in [8].   

In any case, regardless of today’s different points of view, there are plenty of his-
torical documents showing that music was considered able to produce strong and 
sudden emotions in listeners. In the past centuries nobody would have discussed about 
its power to move people emotionally, as clearly shown by the introductory excerpt to 
this paper taken from the beginning of Monteverdi’s Orfeo (1607) or by XVIII cen-
tury reports of performances by singers such as Farinelli, able to temporarily heal 
Felipe V from his depression, or Pacchiarotti, who forced a whole orchestra to stop 
during an opera performance since he moved all of them to sighs and tears, see [9], or 
even to XIX century hysteric reports of Paganini’s concerts, see [10]. So the hardest 
problem doesn’t seem deciding whether music produces emotions or not but how to 
scientifically measure this effect and how to produce it at will. 

This paper aims at proposing a possible model for predicting listeners’ emotional 
engagement by using a carefully selected set of sonological cues and is divided in the 
following sections: 

 

• The measuring technique 
• Experiment setup and data acquisition 
• Cues selection and extraction 
• Choosing the best cues for predicting emotional engagement  
• Using the cues for generating decision trees and rules 
• Testing the rules 
• Discussion / Conclusions. 

2   The Measuring Technique 

The measuring technique for evaluating listeners’ emotional engagement is a very 
difficult problem to solve in its own right: probably the best solution would be to 
design some systems that do not require a conscious feedback from the listener (such 
as electrodes and sensors measuring heart beat, skin conductivity, blood pressure etc.) 
but since such experiments are extremely difficult to be arranged properly and to 
make testing people feel comfortable, the most common tool used so far in this kind 
of experiments is a simple slider that should be moved by the listener when he/she 
feels the music is inducing some emotional response on him/her. 

This is obviously quite risky since it would be very easy for inexperienced listeners 
to simply track a particular aspect of the performance, like the volume, and not any 
emotional effect such music is actually producing on them.  

Due to this problem, we believe that, for having a meaningful experiment with 
this very basic tool, not only the choice of the music pieces is critical but also the 
people who are chosen as subjects should be very well instructed on what to do and, 
whenever possible, they should also have had some previous experience in these 
kind of experiments so as to avoid the risk of recording fake measurements as much 
as possible.     
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3   Experiment Setup and Data Acquisition 

Although being aware of the “volume effect” issue just explained, we decided to use a 
tracking slide in a patch (figure 1) implemented within the EyesWeb open platform 
[11], a software especially designed for processing video and audio data streams, and 
then to select a small group of three people among researchers in the field who knew 
the risks involved in this approach and hence should have known how to avoid its 
pitfalls. 

The used patch gives the listener control on a slider, ranging from 0 (no emotional 
involvement) to 127 (very high involvement) and then saves the slider position, along 
with a time stamp, to a text file for later analysis. The slide value is saved two times 
per second. 

 

Fig. 1. An EyesWeb patch for tracking emotional response while listening to music 

For our experiment we selected two contrasting movements from J.S. Bach Sona-
tas for solo violin (the Presto from Sonata I and the Largo from Sonata III) so as to 
look for aspects that go beyond the character of the piece but that, nonetheless, could 
be responsible for rising emotional effects in listeners.   

The two movements were performed, on a priceless Guarneri del Gesù made in 
1728, by Ms. Tanja BeckerBender, a young soloist winner of numerous international 
prizes and awards, and professionally recorded in an historical setting (a XIV century 
Abbey located near Genoa in Italy) so as to make her feel as inspired as in a real per-
forming environment. 

For the experiment, the three subjects had a chance to listen to the music first, if 
they were not already acquainted with these particular pieces, and then another listen-
ing session followed where they tracked their emotional engagement. 
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The results for the average response of the three subjects are shown in figures 2 
and 3:  

 

Fig. 2. Average emotional engagement response to Presto BWV1001. Y axis shows response 
intensity, X axis shows sample number. There are 2 samples per second. The arrows underline 
the rising and falling patterns. The dots point out the peaks in the response.  

 

Fig. 3. Average emotional engagement response to Largo BWV1005. Y axis shows response 
intensity, X axis shows sample number. There are 2 samples per second. The arrows underline 
the rising and falling patterns. The dots point out the peaks in the response. 

Interestingly, the responses of the various subjects showed peaks about the same 
positions and these, underlined by the dots in the figures, are well evident in the aver-
age profiles. These are the points that interest us in this study.  

It is also interesting to see that most of the peaks fall down more steeply than their 
rises, in agreement with the idea that intense emotions do not last too long but only 
for a few seconds at most and then vanish quickly, as suggested in [12]. 

4   Experiment Setup and Data Acquisition 

Our approach, for extracting data from audio recordings, starts from a very simple 
idea already proposed in [13] several years ago. This idea is to extract event  
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information from a music input signal simply by rectifying and low pass filtering  
it, exactly like if we were working with a Pulse Amplitude Modulation (PAM)  
signal. 

So, by squaring and filtering the signal with filters having different cut off frequen-
cies, we get profiles bearing different information: a cut off frequency of about 20Hz 
will extract the envelope of the signal (we will call this note profile since it shows fast 
events) while reducing the cut off at around 1 Hz or less will simply take the energy 
of the signal (we will call this phrase profile since it shows an average behavior that 
changes slowly). 

Then, if we compare the two profiles extracted in this way as shown in figure 4, we 
can divide the performance in several events that are detected when the envelope gets 
higher values than the energy related value.  

From each of these events we can get insights on what is happening by analyzing 
their shape and the time that occurs in between them so as to collect valuable informa-
tion regarding tempo, dynamics and articulation.  

 

Fig. 4. Profiles obtained by squaring and low pass filtering a music file with different cut off 
frequencies (Y axis: amplitude, X axis: time). Note profile is the envelope of the signal and is 
extracted with a cut off frequency of 20 Hz, Phrase profile is the energy and is extracted with a 
cut off of 1 Hz. 

In particular, new libraries integrated in the EyesWeb platform were developed for 
following this approach so as to extract a set of cues averaged across a time window 
where width and hop size are defined by the user at run time. For details concerning 
these tools see the first chapters in [14]. 

In this particular case the window width was set to 3 seconds for the Largo and to 2 
seconds for the Presto while the hop size was 0.5 seconds, like the slider sampling 
rate. These values were chosen due to the experience in previous similar experiments 
related to playing moods and style recognition problems, like [15],[16],[17]. 
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In particular, Eyesweb libraries were developed for extracting the following set of 
cues: 

 
• Tempo 1: defined as the average Note Duration (DR), in seconds, of the events 

in the current time window. 
• Tempo 2: defined as the number of events detected in the current time window 
• Articulation: defined as Actual Note Duration / Inter Onset Interval averaged 

across the events contained in the time window. 
• Standard Deviation of Articulation 
• Sound Level: defined as the amplitude measured at the beginning of the event, 

i.e. at the intersection between the two profiles. We take the average value 
across the time window. 

• Sound Level Difference: defined as the difference between the current and the 
previous events. We take the average value across the time window. 

• Attack Velocity: defined as the derivative of the note profile at the intersection 
with the phrase profile. We take the average value across the time window. 

• Overall Energy of the signal in the time window. 
• Energy in different frequency bands 
 
The latter is especially interesting since it allows us to analyze whether some bands 

had more relevance in the listeners’ responses (the Guarneri being used by 
Ms.BeckerBender showed extremely strong harmonics). The available frequency 
range was divided in octaves so as to have a better resolution in the lower bands.  

In particular the analyzed bands were:  
 
•       172 – 334     Hz 
•       344 – 689     Hz 
•       689 – 1378   Hz 
•     1378 – 2756  Hz 
•     2756 – 5512 Hz 
•     5512 – 11020 Hz 
 
Besides these, we also looked at the pitch being played to see whether passages 

with rising/falling scales had any influence on the responses. 

5   Choosing the Best Cues for Predicting Emotional Engagement  

Now we wonder which are the factors that determined the rise and fall of the emo-
tional engagement and whether it is possible to extract a set of rules able to explain 
these and then to predict them.  

In particular, we are interested in analyzing what happens during the rising  
and falling patterns underlined in figures 2 and 3. To get an insight on this, we  
take the cues extracted from the performances and see how these correlate with the 
average profiles where the significant emotional engagement (EM) changes were 
identified.  
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The following tables (1 through 8) show the correlation coefficients R between the 
averaged EM and the various cues. R values with higher absolute values than 0.40 are 
marked in bold and R range is from –1 (variables fully inversely correlated) to 1 (vari-
ables fully correlated): 

Table 1. R values for basic cues (Presto BWV1001) tracking rises in EM response 

Rises (start and 
ending samples)

Mean 
DR 

Notes/s Art-
Mean 

ArtSD SndLev Sound-
Diff 

 AttVel  Av Energy Pitch 

1.44 -0.3769 0.4293 -0.2360 0.1682 0.0127 -0.0959 0.1997 -0.0228 0.4397 

54.77 -0.7487 0.4186 -0.5953 -0.2744 0.8436 0.2337 0.6864 0.1837 -0.5525 

108.131 0.4823 0.6648 -0.0824 -0.3672 0.2491 0.0078 0.3304 0.6589 0.5844 

140.164 0.0211 -0.0322 -0.2231 0.2996 -0.4276 0.0139 -0.3210 -0.2836 -0.5498 

172.237 -0.0488 0.1461 -0.0424 -0.1689 -0.7748 0.0879 -0.5161 -0.3935 0.2865 

266.292 -0.2232 0.3065 0.1222 0.0932 0.2165 0.1195 0.2266 0.2315 0.0397 

317.337 -0.2179 -0.3808 -0.1258 0.1070 -0.0324 -0.5850 0.1460 -0.3783 0.2776 

345.379 -0.3466 -0.1674 -0.0029 -0.1311 0.6087 -0.1907 0.4162 0.1624 0.2863 

Table 2. R values for energy band cues (Presto BWV1001) tracking rises in EM response 

Rises (start and 
ending samples) 

172-344 Hz 344/689Hz 689/1378Hz 1378/2756Hz 2756/5512Hz 5512/11025Hz 

1.44 -0.3944 0.0305 0.0351 -0.0490 -0.0016 -0.0968 

54.77 0.2015 0.2224 -0.2100 -0.1428 -0.3425 -0.3685 

108.131 -0.0994 0.1113 0.6381 0.5963 0.5632 0.6652 

140.164 0.1159 -0.3624 -0.1735 -0.1010 -0.2429 -0.3791 

172.237 -0.2988 -0.3681 -0.1392 -0.1839 0.0292 -0.0417 

266.292 0.0712 0.0372 0.4453 -0.0008 0.2902 0.2479 

345.379 -0.2927 0.0599 0.1855 0.1999 -0.1630 -0.0205 

317.337 -0.2105 -0.3592 -0.1946 -0.2504 -0.1973 -0.2228 

Table 3. R values for basic cues (Presto BWV1001) tracking falls in EM response 

Falls (start and 
ending samples)

Me-
anDR 

Notes/s Art-
Mean 

ArtSD SndLev Sound-
Diff 

AttVel Av En-
ergy 

Pitch 

46.54 0.8591 0.8565 0.6496 0.4792 0.9018 -0.5537 0.9036 0.5629 0.7375 

76.92 0.2538 -0.2634 0.3679 0.7140 -0.3008 -0.0721 -0.6944 0.1448 -0.3476 

131.137 0.8838 0.7792 -0.1595 0.5149 -0.6044 0.3122 -0.4703 0.7001 0.8931 

164.172 0.1056 0.7804 0.5351 -0.5667 -0.8115 -0.3635 -0.7359 0.2035 -0.1393 

237.251 0.6374 0.8911 -0.0302 -0.1005 -0.3339 0.0892 -0.3736 0.6584 0.6254 

292.303 -0.9148 0.4703 0.2098 -0.1391 -0.5460 0.2005 0.1307 -0.6154 -0.3980 

337.345 -0.5946 0.1086 -0.2943 0.5403 0.9852 -0.3288 0.7372 -0.3710 0.4285 

379.401 -0.3763 -0.1775 -0.2744 -0.2414 0.1490 -0.5418 -0.0079 -0.0703 -0.0676 
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Table 4. R values for energy band cues (Presto BWV1001) tracking falls in EM response 

Falls (start and 
ending samples) 

172-344 Hz 344/689Hz 689/1378Hz 1378/2756Hz 2756/5512Hz 5512/11025Hz 

46.54 0.0276 0.4019 0.7875 0.5109 0.6028 0.4708 

76.92 0.1648 0.1466 0.1230 -0.0007 -0.3853 -0.4249 

131.137 -0.6677 -0.0343 0.6681 0.6887 0.7042 0.9151 

164.172 0.3286 0.1769 0.1783 0.3281 -0.4137 -0.3895 

237.251 -0.3698 -0.4454 0.6985 0.5825 0.6997 0.6599 

292.303 -0.2438 -0.3654 -0.3907 -0.2422 -0.5723 -0.4649 

337.345 -0.2473 0.0095 -0.2743 -0.8711 -0.7635 -0.7594 

379.401 -0.1480 -0.1494 0.0355 -0.0281 -0.2039 -0.1907 

Table 5. R values for basic cues (Largo BWV1005) tracking rises in EM response 

Rises (start and 
ending samples)

Me-
anDR 

Notes/s Art-
Mean 

ArtSD SndLev Sound-
Diff 

AttVel Av En-
ergy 

Pitch 

1.61 -0.4984 0.2645 -0.2649 0.0561 0.8676 0.1455 0.8334 -0.1700 0.3324 

70.108 -0.2913 -0.1254 0.0752 -0.0450 0.0690 -0.2661 -0.1120 -0.3368 -0.1107 

122.141 -0.3558 0.2800 -0.3236 0.4375 0.6838 -0.1214 0.7664 0.4368 0.4788 

190.221 -0.0666 0.3624 -0.0143 -0.3642 0.8136 0.4348 0.5182 0.5438 0.7880 

247.261 -0.8723 -0.4233 -0.6048 0.0130 0.7856 -0.2172 0.7713 0.0426 0.4659 

269.278 -0.3859 0.6645 -0.2753 0.1566 -0.9628 0.2969 -0.8605 0.5298 -0.1459 

294.318 0.3120 -0.4262 0.6200 0.4173 -0.3906 0.2692 -0.3362 -0.1851 -0.0029 

337.345 -0.7628 0.01264 -0.8468 0.1714 0.8757 0.1834 0.5141 -0.7574 -0.3768 

377.398 -0.2318 0.2168 -0.2318 0.4938 0.8095 -0.1467 0.6720 0.3749 0.2187 

415.423 -0.2217 0.6668 -0.0567 -0.1360 -0.8021 0.1462 -0.4113 -0.3382 -0.4088 

430.442 -0.0160 -0.6479 -0.5188 0.0924 -0.0330 -0.0232 0.6981 -0.3376 0.4616 

Table 6. R values for energy band cues (Largo BWV1005) tracking rises in EM response 

Rises  172-344 Hz 344/689Hz 689/1378Hz 1378/2756Hz 2756/5512Hz 5512/11025Hz 

1.61 -0.0961 0.1419 0.4166 0.4409 -0.2491 0.0358 

70.108 -0.2408 -0.2420 -0.2951 -0.2260 -0.2535 -0.1346 

122.141 0.2052 0.0821 0.3584 0.3726 0.4364 0.4661 

190.221 -0.1460 0.2412 0.6106 0.4667 0.5207 0.5951 

247.261 0.3018 -0.5291 0.0752 0.0703 0.1984 0.4561 

269.278 -0.3877 0.5041 -0.1079 0.1944 0.5331 0.1864 

294.318 -0.4838 -0.2312 0.1811 -0.2021 -0.1489 0.1532 

337.345 -0.3199 -0.4437 -0.9051 -0.3922 -0.7373 -0.8016 

377.398 -0.1284 0.3894 0.5474 0.6762 0.1750 0.1031 

415.423 0.0553 -0.1245 -0.2575 -0.4389 -0.3558 -0.1828 

430.442 -0.5905 -0.6545 -0.2484 0.1112 -0.2626 -0.1307 
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Table 7. R values for basic cues (Largo BWV1005) tracking falls in EM response 

Falls (start and 
ending samples)

Me-
anDR 

Notes/s Art-
Mean 

ArtSD SndLev Sound-
Diff 

AttVel Av En-
ergy 

Pitch 

76.89 -0.5486 0.4329 -0.2324 0.1130 0.2483 -0.7637 -0.2687 -0.5888 -0.2346 

110.122 -0.3450 -0.1628 0.1869 -0.1208 0.8953 -0.0430 0.8420 -0.0111 0.4130 

154.187 -0.1673 -0.3328 -0.0369 -0.0356 0.4420 -0.0641 0.1878 0.0287 -0.1127 

234.246 0.3941 0.7818 0.2022 -0.4052 0.3087 0.8537 0.9556 0.8234 0.1505 

260.269 -0.6003 0.4051 0.1393 -0.0524 -0.6743 -0.2971 -0.8605 0.2235 0.6168 

278.291 0.0245 0.3117 0.2281 -0.3184 0.1652 0.6261 -0.5291 0.3099 0.5279 

318.337 0.4243 0.7934 -0.1234 0.1351 0.5704 -0.1280 0.7159 0.7351 0.7902 

344.375 0.0723 0.2748 -0.3534 -0.2941 -0.7079 0.2646 -0.7723 0.0445 0.4542 

398.415 -0.2559 0.3618 -0.5106 0.4921 -0.9102 -0.2006 -0.8918 -0.2357 -0.5819 

423.430 -0.8087 -0.4513 -0.6779 0.6924 -0.0530 -0.3975 0.6109 -0.5915 0.7880 

Table 8. R values for energy band cues (Largo BWV1005) tracking falls in EM response 

Falls  172-344 Hz 344/689Hz 689/1378Hz 1378/2756Hz 2756/5512Hz 5512/11025Hz 

76.89 -0.4303 -0.6747 -0.3285 -0.2753 -0.4402 -0.1944 

110.122 0.0068 -0.1936 0.1065 0.1401 0.2963 0.3914 

154.187 0.1942 0.0307 0.1573 -0.0355 -0.3914 -0.2532 

234.246 0.4767 0.5844 0.7395 0.7854 0.6557 0.7345 

260.269 -0.2832 -0.5671 0.4198 0.4015 0.4459 0.6038 

278.291 -0.5535 0.2307 0.3664 0.3400 0.4929 0.4603 

318.337 0.1807 0.1757 0.6303 0.5381 0.5272 0.5410 

344.375 -0.3309 -0.0249 0.0902 0.2419 0.0926 0.0519 

398.415 0.4731 -0.0460 -0.2019 -0.2974 -0.1476 -0.1307 

423.430 -0.3140 -0.5410 -0.2759 -0.6739 -0.5926 -0.6685 

 
The significance threshold was chosen to be |0.40| since this value is high enough 

to show a common trend in the two series and provides a good amount of data for 
comparing the different cues.    

By looking at these tables, we can try to identify the most relevant cues for under-
lining EM effects and then try to use these for generating a set of rules able to predict 
EM changes. 

First of all, we should note that the Sound Level Cue is a very important one, as we 
would have expected, since it often gets high absolute values in the correlation coeffi-
cients. Nonetheless we see that we had rises marked both by positive values (volume 
gets louder) but also others marked by high negative ones (volume gets softer). This is 
true also for the falls, so the listeners have avoided the pitfalls of the volume effect 
problem (i.e. simply tracking volume changes).  

In table 9 we see a summary of the previous tables where cues showing signifi-
cantly high correlation value (|R| > 0.40) are written in bold. 
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Table 9. Number of times each cue gets a correlation value |R| > 0.40 

Cue Rises 
(BWV1001) 

Falls 
(BWV1001) 

Rises 
(BWV1005) 

Falls 
(BWV1005) 

Total 

Note DR 2 5 3 4 14 
Notes / s 3 5 5 5 18 
Art. M. 1 2 4 2 9 
Art SD 0 5 3 3 11 
Sound Level 4 5 8 6 23 
Sound Diff. 1 2 1 3 7 
Att. Vel. 3 5 9 8 25 
Av. Energy 1 4 4 4 13 
Pitch 4 4 5 7 20 
172-344 Hz 0 1 2 4 7 
344-689 Hz 0 2 4 4 10 
689-1378 Hz 2 3 4 3 12 
1378-2756 Hz 1 4 4 4 13 
2756-5512 Hz 1 6 4 6 17 
5512-11025Hz 1 6 4 5 16 

6   Using the Cues for Generating Decision Trees and Rules  

From table 9 we see which are the most relevant cues for identifying EM changes: 
Notes/s, Sound Level, Attack Velocity, Pitch and the energy in the 2756-5512Hz band 
(from now on we will call this “Mid Harmonic Energy”). 

These cues data can be used for generating classification/decision trees and rules 
following the well known C4.5 generation and pruning algorithms proposed in [18]. 

The trees were built by taking cues data during the rise and fall patterns underlined 
previously and our aim is to classify these two categories.   

The overall data set was first divided into two groups: a training set and a testing 
one, the latter containing 10% of the original data randomly chosen. In this way we 
had, for the Presto, a training set of 323 vectors (each containing the values of the five 
cues underlined in Table 9) and a test set of 36 vectors, while for the Largo the train-
ing set had 348 vectors and the test set 41. 

A summary of the trees characteristics and testing results is shown in Tables 10 
and 11: 

Table 10. Classification Tree Model for Presto BWV 1001 

Number of Training observations 323 Number of Predictors 5 

Number of Test obervations 36 Class Variable Rise/Fall 

Total Number of Nodes 106 % misclassified  

Number of Leaf Nodes 54 On Training Data  4.33% 

Number of Levels  20 On Test Data 22.22% 
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Table 11. Classification Tree Model for Largo BWV 1005 

Number of Training observations 348 Number of Predictors 5 

Number of Test obervations 41 Class Variable Rise/Fall 

Total Number of Nodes 150 % misclassified  

Number of Leaf Nodes 56 On Training Data 4.89% 

Number of Levels 17 On Test Data 36.59% 

Table 12. Generated Rules for EM prediction in Presto BWV1001 (R: Rise, F: Fall) 

Rule Support Confidence 
If  Notes/s < 0.5 then R/F = F  1.5 % 100% 
If  Notes/s >= 0.5 then R/F = R 98.5% 73.8% 
If  Notes/s > 3.0 then R/F = R 38.3% 87.4% 
If  SoundLevel >= 0.00968 then R/F = F 12.1% 61.5% 
If  Sound Level < 0.01076 then R/F = R 91.3% 76.3% 
If  Sound Level >= 0.01076 then R/F = F 8.7% 60.7% 
If  Sound Level < 0.00827 then R/F = R 82.4% 78.2% 
If  Sound Level >= 0.00827 then R/F = F 17.6% 50.9% 
If MidHarmonicEnergy < 0.0003889 then R/F = R 54.2% 76.0% 
If MidHarmonicEnergy >= 0.0009881 then R/F = R 18.0% 72.4% 
If  AttackVel >= 0.01611 AND MidHarmonicEnergy  < 0.0003167   
then R/F = F 

2.2% 100% 

If  AttackVel >= 0.01843 then R/F = F 7.1% 79.6% 
If  AttackVel >= 0.01732  then  R/F = F 8.0% 65.4% 
If  AttackVel >= 0.00818 then  R/F = R 43.3% 67.1% 
If  AttackVel >= 0.00599 then R/F = R 61.3% 72.2% 
If  Pitch >=  553  then R/F = R 43.7% 79.4% 
If  Pitch >=  626  then R/F = R 26.5% 77.3% 

Table 13. Generated Rules for EM prediction in Largo BWV1005 (R: Rise, F: Fall) 

Rule Support Confidence 
If AttackVel  <  0.00014 then R/F = F 4.0% 64.3% 
If AttackVel >= 0.00712 then R/F = R 22.4% 60.3% 
If AttackVel >= 0.00055 AND SoundLevel < 0.00075 then R/F = F 6.9% 95.8% 
If  AttackVel > 0.00356 AND Pitch >= 601 AND SoundLevel >= 0.00131 
then R/F = R 

11.2% 87.2% 

If  SoundLevel >= 0.00371 then R/F = R 42.0% 61.6% 
If  Pitch >= 531 then R/F = R 64.9% 61.5% 
If  Pitch >= 712 then R/F = R 21.3% 64.9% 
If  Pitch < 495 then R/F = F 25.3% 61.4% 
If  Pitch < 357 then R/F = F 4.3% 80.0% 
If  Notes/s < 0.333 then R/F = F 1.2% 100% 
If  Notes/s < 0.666 then R/F = F              5.2% 61.1% 
If  Notes/s >= 0.666 then R/F = R 94.8% 54.4% 
If Notes/s >= 1.666 then R/F = R 37.6% 61.1% 
If MidHarmonicsEnergy >= 0.002352 then R/F = R 16.7% 62.1% 
If MidHarmonicsEnergy < 0.00001 then R/F = F 10.1% 62.9% 
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By analyzing the trees we can produce a set of rules to underline some common 
aspects found while going through the various branches.  

These rules can be sometimes overlapping and redundant and, among those gener-
ated by the system, the most interesting ones, which are evaluated by looking at the 
support (i.e. how  much of the original data they can be applied to) and confidence 
(i.e. how much of the data they classify correctly) percentages, are shown in Tables 
12  and 13. 

7   Testing the Rules  

As we can see from the results showed in the previous pages, the pruned trees classify 
quite well most of the data but the test sets show some problems for correctly identi-
fying the falls which were often misunderstood as rises, hence the relatively high 
values shown in tables 10 and 11.  

Anyway, when classifying test data, the most important thing to look at is the result-
ing average behavior and, since the training was carried out with only two classes (rise 
and fall, no flat lines) it is understandable that single vectors can be misclassified. 

Regarding the generated rules, it is interesting to see whether they can actually 
predict the emotional response of a listener in a similar piece. 

To verify this, we chose the Preludio from the Partita III to test the rules generated 
previously and related to a fast piece (Table 12), and the first half (repeat included) of 
the Andante from the Sonata II for the rules relating to a slow piece (Table 13). 

The rules were implemented in MatLab and weighted according to their confidence 
percentage (so rules with higher confidence have stronger weights) then, by feeding 
the cues to the MatLab file, the system evaluates whether the current vector would 
provoke a rise or rather a fall in the emotional response of the listener. In this way it is 
able to propose a possible “EM” profile that, for the Preludio, is shown in figure 5 
(the graph is obtained by adding 1 when the resulting sum of the weighted rule values 
predict a rise, subtracting 1 when the rules predict a fall, doing nothing when there is 
a tie. The overall value can not go below zero). 

Now we should compare this profile with that of an actual listener and see whether 
we have similarities.  

Subject three of the previous experiment was hired again and had another session 
like the one explained at the beginning of this paper. His EM profile is shown in  
figure 6. Both profiles in figures 5 and 6 have been normalized to 1.  

As we can see, the two profiles in the above figures show obvious similarities, and 
both plots are divided in a first introductory part featuring three main low peaks, a 
central high zone and an ending with three more high rising peaks.  

By analyzing Ms. BeckerBender’s performance, we see it starts rather softly and 
then it builds up with a crescendo following the rising pitch progressions in the fast 
passages of the score. These are the characteristics that were identified by the system 
and that, probably, contributed to rise the EM value of the subject who was listening 
to the recording. 
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Fig. 5. EM profile predicted by the system for Preludio, Partita III BWV1006 

 

Fig. 6. EM profile as recorded by subject three for Preludio, Partita III BWV1006 

Now let us test the rules generated for the slow movements. The predicted profile 
is shown in figure 7 while the subject response is shown in figure 8 (both have been 
normalized to 1). 

Once more the similarities between the two profiles are striking as both of them 
have the EM peaks in the same positions showing that the system, driven by the pre-
viously generated rules, is able to identify the points which are most likely to produce 
an EM in listeners. 
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Fig. 7. EM profile predicted by the system for Andante (1st Half), Sonata II BWV1003 

 

Fig. 8. EM profile as recorded by subject three for Andante (1st Half), Sonata II BWV1003 

It is very interesting to compare how the system and the listener faced the repeat of 
the movement which was performed by the artist emphasizing different aspects such 
as dynamics and articulation patterns.  

At the beginning of the repeat the system identified only some little spots of possi-
ble EM, but not enough to bring the emotion measures to a high level as it did during 
the first time. We should note that the system has no “memory” of what happened 
when the music was played for the first time. The listener, instead, had this knowl-
edge and, as noted while commenting the results after the experiment, the emotional 
engagement felt during the first time influenced and amplified the measurements 
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during the second listening, adding more involvement and reaching higher EM levels 
from the very beginning of the repeat. 

8   Discussion / Conclusions 

As the figures in the previous section show, the proposed model is able to predict new 
particular responses of one of the training subjects effectively, within this particular 
musical repertoire.  

Despite the limited data available, this achievement looks particularly interesting 
since, as shown by tables 1 through 8, it seems to have successfully avoided the most 
common and dangerous pitfall such kind of basic experiments can easily fall into due 
to inexperienced subjects: the “volume effect”, i.e. simply tracking loudness or any 
other particular cue, as explained in section 2. This aspect further validates its results 
since this problem was a possible major objection to other recent papers on this sub-
ject (for example, [19]) where, despite the very interesting results, such issue could 
have aroused during the data gathering process.     

Moreover, the experiment discussed suggests several possible applications that 
could also be of interest for commercial products: for example an EM prediction 
system could be used to develop a more complex and flexible software able to predict 
listeners’ emotional engagements in particular pieces and hence it could be used to 
have predictions about the possible success, i.e. sales, a particular piece/song will 
have among a targeted audience (a piece that shows high predicted EM and well de-
fined peaks is more likely to be enjoyed and, hence, successful).  

Such approach could also be useful in music teaching software to evaluate stu-
dents’ performances and even in totally different applications such as querying data-
bases: for example selecting pieces whose emotional profile looks close to that of a 
given song, could be a reliable way for suggesting other possible items of interests to 
customers in a shopping environment such as Amazon or others.  

Of course, to achieve these results, a lot of work is still needed to refine the re-
search and make the systems more general and robust. Anyway the results obtained 
during the development of this research are very promising and show that the audio 
cues being selected are really meaningful to objectively describe and quantify several 
aspects of music related to emotions which, so far, could only be explained in often 
ambiguous and subjective words such as those used for describing particular moods 
and “sound colors” in music playing.    
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Abstract. Knowledge of the key of a musical passage is a pre-requisite for all 
the analyses that require functional labelling. In the past, people from either a 
musical or AI background have tended to solve the problem by means of 
implementing a computerized version of musical analysis. Previous attempts 
are discussed and then attention is focused on a non-analytical solution first 
reported by J.A.Gabura. A practical way to carry it out is discussed as well as 
its limitations in relation to examples. References are made to the MusicXML 
format as needed. 

Keywords: key, key change, tonality, dot product, MusicXML, surface 
features. 

1   Introduction 

An essential information for most of the possible variables of interest that could be 
derived either from the horizontal or vertical dimensions of music is the knowledge of 
the key at every point in the score.  Traditionally, computer music studies have been 
performed on the basis of a small number of examples selected or transposed to be in 
C major or A  minor, as well as verified to be non-modulating. This is the easy way to 
circumvent the problem of identifying the tonic for the purpose of functional 
labelling. The great majority of music pieces do not comply with these requirements. 
Even in the early 18th century, music was likely to modulate or at least tonicize 
within the framework of a few measures. The alternative would be to submit the 
music to functional analysis. 

In the music score the key is never explicitly indicated but merely implied. There 
are several ways to find the tonic by looking at the score, but none of them will work 
in all cases, and corroboration from different elements in the score is sometimes 
needed. The problem is a complex one because composers work in the manner of 
programmers who do not document their programs. Thus, a composer could establish 
a basic tonal plan for a work, and realize it by using the appropriate chords and 
modulations. But the tonal plan is not shown on the score. Once this is completed, all 
the scaffolding has been removed. Determining the key entails some degree of 
analysis, for which the analyst has to do a sort of reverse engineering on the score. He 
figures out the tonality on the basis of certain elements starting with the key signature 
and the final chord, and then checks for accidentals that reveal the minor mode, 
suggest  modulations, secondary dominants and the like.  
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This should not be a problem for music from the 18th and early 19th centuries, 
when composers followed strictly a number of well known conventions.  Although 
there can always be exceptions – such as Jean-Fery Rebel's Cahos –, in the baroque 
and classical periods, establishing clearly the tonic was the first preoccupation of the 
composer, and any listener with a modest musical training could sing back the tonic 
after hearing only a few seconds of music. The analysis of the music of this period 
could have been argued to be 'objective'. But as we move ahead in time, the key gets 
progressively more blurred. Beethoven, at the opening of his 9th symphony allowed 
for thirty seconds of modal haze. That was an intended effect. Matters turned more 
complicated in the works of Liszt and Wagner. Tonal ambiguity can be purposely 
created, as in Liszt's "Bagatelle sans tonalité", which means that a key cannot 
necessarily be objectively found even in music that could otherwise be considered 
tonal. If the key cannot be unambiguously inferred from the surface elements, there is 
a potential intrusion of subjectivity, which has to be avoided at all costs. 

This means that a necessary tool in computer music studies should be a method to 
determine the key as a point function, including the diagnostic that no key is 
detectable in a passage. 

2   Early Attempts 

Every music student knows that music theory is full of rules. These rules give the 
impression to be exhaustive and complete, although music theoreticians, unlike 
mathematicians, have never subjected their system to such logical analysis. Music 
studies are also full of mechanical, tiresome and error-prone chores that require little 
knowledge apart from counting, such as transposing. Consequently, as soon as 
computers became available, many researchers thought computers would be ideal 
tools to take care of those tasks that can be accomplished by the mere application of 
rules, as well as to provide insight into the rules themselves. However, the impression 
of logic in music rules did not survive scrutiny. In 1968, John Rothgeb pioneered the 
use of computers to solve the problem of harmonizing the unfigured bass with results 
less than satisfactory. Years later he summarized them writing that "the computer 
made a significant and well-defined contribution to the study by exposing deficiencies 
in the theories under investigation and in suggesting further lines of enquiry" [1]. 

One interesting attempt among the early ones was Dorothy Gross’ PhD 
dissertation, A Set of Computer Programs to Aid in Musical Analysis [2] in which she 
developed a package of computer programs to do pattern tracing, thematic analysis, 
grouping of sonorities and harmonic analysis.  Her initial goal had been to use 
computers to carry out full analyses. However, like other early researchers, she found 
that  

 
“music analysis with the computer has brought to light the inadequacies of 
existing music theory in fully describing musical attributes because the computer 
reveals all too clearly the gaps and loopholes in formalized theoretical systems”.  

 
Because of this, she ended limiting her attempt to duplicate “the more routine parts 

of quantitative analysis”. Her set of programs concentrated on horizontal and vertical 
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surface features, and her linear and thematic analyses programs were quite successful. 
In relation to harmony, her program listed and counted chords according to their 
quality and determined the chord root. But, since no attempt was made to identify 
tonality and scale degrees, no functional labels were assigned. However, she found 
that certain chords are context-dependent and their identification could not be made in 
isolation. The task surpassed the capability of her pattern-matching algorithms.  She 
explained:  

 
“Our one program going beyond routine operations is our harmonic analysis 
program, which started as a small chord-labelling option and grew into a project 
in simulating human thought as we realized that the definitions found in 
textbooks were entirely insufficient for even the analysis of a Haydn’s minuet”. 

  
A few years later, H.J.Maxwell attempted the artificial intelligence approach to 

identify chords and keys. In his PhD dissertation, "An Artificial Intelligence approach 
to computer-implemented analysis of harmony in tonal music" [3] he recognized that 
"there is no clear-cut, non-intuitive method for performing harmonic analysis of tonal 
music". Claiming the superiority of knowledge-directed intelligent methods over 
brute-force algorithms, he pointed out that the ability to tell a chord from a non-chord 
is crucial in building a computer harmonic analysis program.  

Maxwell first identified the central problem saying that "chords define the 
existence of tonality, but the tonality in turn defines the functions of the chords". He 
developed an expert system based on 55 rules centered around two main problems: 
"Which vertical sonorities are chords" and "What is the key", while knowing that both 
problems are not independent. He explained: 
 

"Once it is decided exactly what notes are in a chord, and what key in which to 
analyze the chord, finding the function label is a simple matter. But the label 
given may, in turn, influence what notes, which sonority, should be chosen as 'the 
chord'. The key is also dependent on the chords that are selected for labelling 
because its strength depends on the functions that can be assigned to them. This is 
the very crux of the problem, a symmetrical dependency – that the identity of the 
key depends on the chord functions, while the chords and their functions are 
determined by the key".  

 
Maxwell's system proceeds through several stages, first determining consonances 

and levels of dissonance, and on the basis of these and their metrical placement, 
telling chords from non-chords. Based on the chosen chords, the tonality is assumed, 
and the analysis proceeds from beginning to end, “analyzing as long as possible in the 
currently established key, and only attempting to modulate when a certain threshold 
of functional weakness is exceeded". 

In his dissertation, Maxwell analyzed only three pieces from the French Suites of J. 
S. Bach. It would have been interesting if he had continued perfecting his system, but 
he does not seem to have done it. In 1992 he contributed an abridged version of his 
dissertation to the compilation "Understanding Music with AI: perspectives on music 
cognition" [4] but there again he referred only to the same pieces. 

Maxwell's cross-dependency is a serious drawback to the analytical approach. 
Music cannot be dealt with as if there was an intrinsic logic to it. Composers do not 
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follow rules and even if rules could be thoroughly established a posteriori, it can be 
taken for granted that every one of them would have to admit exceptions. 

In 1987, the noted chemist H. C. Longuet-Higgins published "Mental Processes" 
[9], a collection of  articles about cognition in areas of music, language, vision and 
memory. In the article "On interpreting Bach" he said he wrote a parsing program "for 
explicating the harmonic relations between the notes of a Bach fugue subject". After 
discussing a number of "rules", he affirmed: "A program embodying these rules – and 
no others – assigns all 48 of the fugues [from The Well Tempered Klavier] to their 
correct keys, on the basis of the notes of the subject alone". It seemed that an exciting 
development was going to be unveiled. Unfortunately there was no such method. 
What Longuet-Higgins did is consider only the pitches of the notes of the fugue 
subjects, and note by note from the beginning, eliminate all the keys that do not 
contain that pitch. When this process leaves only one key, this is assumed to be the 
key of the fugue. But in one out of three of the fugue subjects, in order to 'find'  
the key he had to resort to the additional rule that a fugue subject either begins on the 
tonic or the dominant of the key. Then he needed an additional rule to be able to 
dispose of chromatic notes. In other words, his 'method' only works for melodies that 
do not modulate and begin with the tonic or the dominant of the key. 

3   A Non-analytical Approach 

If there were an objective non-analytical method to find the key of a chunk of music 
on the basis of its surface features, the immediate identification of scale degrees 
would greatly enhance its usefulness for analytical purposes. Since any trained person 
can identify by ear the tonic and the mode after hearing just seconds of standard tonal 
music, there must be enough information in the music to accomplish this objective. 
The problem is how to extract it. 

James Gabura, then an undergraduate at the Toronto University, presented a paper 
on "Computer Analysis of Musical Style" [5] in which he made several attempts to 
find “an objective measure of style” considering parameters such as melodic 
autocorrelation, chord structure, chord duration, chord type, key and modulation, with 
a view to obtaining an insight into the stylistic differences between the piano sonatas 
of Haydn, Mozart and Beethoven. To this purpose he coded pitch and duration 
directly from the scores. While describing his analysis of the distribution of pitches, 
he made the following intriguing remark: 

 
"It was found that the computer could determine automatically the key in which 
the sample was written by comparing this distribution with arbitrarily assumed 
distributions for all twenty-four possible keys. By this method it was possible to 
determine it with perfect accuracy over the range of musical examples tested". 

 
Later on he added: 

 
"Algorithms were devised which can detect key and key change (modulation) 
within a section or movement". 
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And finally, in relation to modulation: 
 
"...it was observed that with the parameters adequately adjusted, the computer 
indicated key changes decisively without oscillation between the two keys 
present". 

 
Unfortunately he gave no information about the "arbitrarily assumed distributions 

for all twenty-four possible keys" or the algorithms devised.  
In his reworking of the article for the 1970 compilation "The Computer and Music" 

[6], he expressed it this way: 
 

"For each of the excerpts coded it was possible to determine the key simply on 
the basis of the pitch-class distribution of the excerpt. To do this the excerpt 
distribution is matched against a set of key numbers, which define the diatonic 
pitch classes contained in each of the possible 24 keys". 

 
He went on to explain the matching process, giving two alternative mathematical 

methods, in the first of which the key is assigned to the key index for which the dot 
product between the distribution of pitches and the key numbers is maximum. But 
again he did not explain the nature or provenance of the set of key numbers. Could he 
had readily solved the problem almost twenty years earlier than Maxwell's work? If 
there was a set of "key numbers" like he suggested, it would certainly be not 
'arbitrarily assumed' but a set that in an essential way represented the tonal system. 

4   The Relative Frequencies of Chords 

In 1937, almost thirty years before Gabura's paper, Helen Budge, pianist and music 
instructor, entered Teachers College as a candidate for the PhD degree, for which she 
produced a thesis entitled "A Study of Chord Frequencies (Based on the Music of 
Representative Composers of the 18th and 19th centuries)" [7]. The study was 
undertaken to show the relative frequency of the chords occurring in diatonic 
harmony, for which the statistical information had been lacking. 

Since computers were not available at the time, her study was based on hand-made 
harmonic analyses. She selected 24 composers from François Couperin to Edward 
MacDowell, and analyzed a large number of their works – mostly excerpts but 
including some substantial works in their entirety: Handel's Judas Maccabeus, 
Mozart's Symphony in G minor, Schumann's Carnaval and Mendelssohn's St.Paul. A 
total of 65,902 chords were hand-counted of which 11,049 were chromatic. Diatonic 
chords were classified and tabulated, and their relative frequencies calculated. 

The results showed a number of very interesting trends and figures, for example, 
that the classical period shows the least variety of chords, and there is a constant 
increase of chromaticism with time.  There are also conclusions for chord usage for 
individual composers – typically, Wagner shows the lowest use of the tonic chord and 
Verdi the highest.  

As could be expected, she found that chord frequencies vary along time. However, 
the changes in the figures are much slighter than it could have been expected. For 
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example, the frequency of the Tonic triad goes from 22.89% in early 18th Century to 
19.69% in late 19th Century. Along the period of common practice chord frequencies 
do not vary so much that their relative positions could change. The table shows the 
overall results for chords whose frequencies are higher than 1%, in relation to the total 
of diatonic plus chromatic chords. 

Budge’s overall chord frequencies (all inversions) 

Chord Frequency
I 34.37 

V7 14.67 
V 11.25 
IV 7.74 
II 4.52 
VI 4.18 
II7 2.00 
VII 1.70 
III 1.13 
VI7 0.94 

 
What this means is that these frequencies epitomize the tonal system – tonal 

harmony, whether from the baroque or the post-romanticism, has a strong peak at the 
tonic, a secondary one at the dominant, a tertiary one at the subdominant –, and the 
statistics for any tonal piece should match more these figures quite closely. 
Consequently, they provide a method to build the set of key numbers referred to by 
Gabura. 

Now, these figures cannot be used directly as they correspond to the frequency of 
chords rather than scale degrees, and it is these that are needed. It would be necessary 
to use the table to derive the implied frequencies for all scale degrees. The task would 
require some additional assumptions about the distribution of loose notes, for example 
that it closely resembles that of chordal notes, which is not unreasonable. In addition, 
the information from Budge is incomplete in the sense that she counted but did not 
classify the dissonant chords. However, considering that these are a set of roughly 
fifty chords that account for only 16.76% of the total, the effects of the imprecision of 
an educated guess cannot have a severe effect on the outcome. 

Robert Ottman, in Advanced Harmony [8] gives a list of all the altered chords that 
“enjoy some degree of usage”. Eliminating repetitions,  – for example the chords #id7, 
iiid7, #vid7 are enharmonic inversions of the same chord –  there are 52 types of altered 
chords left.  Assigning judiciously arbitrary frequencies below 1% to each of them, 
leads to the following working assumptions about pitch class frequencies. 

These percentages form a suitable set that could be used as Gabura's key numbers 
and could be construed as a "key archetype". Notice that the frequency of the 
dominant, both in minor and minor, is greater than the tonic. This, of course, is the 
result of the fifth degree of the scale being part of both the chords of greatest 
frequency. As expected, the differences between major and minor are concentrated in 
the so called modal degrees.  
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Working assumptions for the frequencies of chords 

Scale Degree      Major mode        minor mode 
I 16.80% 18.16% 

#I-flatII  0.86%  0.69%  
II 12.95% 12.99% 

#II-flatIII 1.41%  13.34%   
III  13.49% 1.07% 
IV  11.93% 11.15%  

#IV-flatV 1.25%  1.38%    
V  20.28% 21.07% 

#V-flatVI 1.80% 7.49%    
VI  8.04% 1.53%   

#VI-flatVII    0.62% 6.88% 
VII  10.57%  3.92% 

 
Now it becomes possible to determine the key for every point in the score. The 

method considers the key numbers as the components of a vector. Because there are 
two alternatives, major and minor, it is necessary to take the key-numbers vector as 
having 24 components. The accumulated durations for the 12 pitch classes become 
the components of another vector. Their matching is accomplished by calculating the 
dot product of both in all its 24 possible relative rotations. The maximum indicates the 
best alignment of the music vector with the key archetype. Naturally, "perfect 
accuracy" cannot usually be expected. If the passage is stereotypical, the result would 
be clear cut. But depending on the level of tonal obscurity, the method should indicate 
that a key is not determinable from the passage. This has to be understood to mean 
that the music vector is not shaped in a tonal way. Notice that the nature of the 
calculation always gives a best alignment for the vector. It is still necessary to 
determine the degree of divergence of the vectors that disqualifies the choice of key. 

5   Applying the Method 

For long time, computer music studies had faced the problem of the lack of a standard 
format for digital music files.  A good number of programs have been made 
commercially available to carry out different tasks such as typesetting music, playing 
music through a MIDI port or working as sequencers, ranging from the freeware to 
the very expensive. But usually each one sets its own format, and conversion from 
one to another is generally impossible. Even as successful a program like Finale, that 
could become a de facto standard,  uses a format that its creators have for years 
refused to make public. The only widely accepted standard is MIDI, but everybody 
who works with music notation knows that MIDI does not know about stems, beams, 
measures, or the difference between G-sharp and A-flat. Fortunately, in 2001, a 
format intended for exchange of information and analysis, MusicXML, became 
available on a royalty-free basis and has already been adopted by a large number of 
applications, raising the hopes that it would become the long waited universal 
translator. MusicXML comes in two formats: Partwise, in which successive measures 
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are contained within each part, and timewise, where successive musical parts are 
contained within each measure. Partwise, the default option, is used by most 
applications. It is simple to convert from one to the other. Notice that the internal 
structure of a measure in MusicXML does not vary regardless of the format. 

Let us consider as a first example a brief Sonata in G minor by Domenico Scarlatti, 
which is only 16 measures long. In order to determine the key by the method of the 
maximal dot product, it is necessary to collect a large enough number of notes for the 
calculation to be meaningful. It is possible to calculate over the whole of the piece 
and extract a global result. In this case, we obtain the correct result of G minor. Notice 
that this is not something that should be expected.  Even simple works like this 
modulate, and no composer ever keeps a tally on how long he stayed in the main key.  

One bar at a time is a natural unit to begin with. Calculating measure by measure 
we obtain: 

Measure by measure results for Scarlatti's Sonata 

Measure 1 G minor   Measure 9 B-flat Major 
Measure 2 G minor   Measure 10 G minor 
Measure 3 B-flat Major  Measure 11 B-flat Major 
Measure 4 B-flat Major  Measure 12 G minor 
Measure 5 B-flat Major  Measure 13 G minor 
Measure 6 B-flat Major  Measure 14 G minor 
Measure 7 B-flat Major  Measure 15 G minor 
Measure 8 E-flat Major  Measure 16 G minor 
 
Apart from the oscillation between B-flat major and G minor in measure 10, the 

only anomaly is in measure 8. If we examine the notes' durations (quarter note = 8) in 
the content of that measure we find: 

C=8;      E-flat=6;      F=6;      G=6;      A=2;      B-flat=12; 

This reveals that there are too few notes and too much tonic in the measure. If we 
remember that the key numbers say that the note with the greatest weight is not the 
tonic but the dominant, it is not surprising that E-flat comes as the key. The five top 
dot products for the measure show additional detail: 

 
E-flat M = 1546.8124 
B-flat M = 1466.3928 
 b-flat m = 1456.8026 
 e-flat m = 1349.6004 
        f m = 1218.507  
 

which says that B-flat major is trailing E-flat by only 5.2%. This result suggests the 
convenience of adopting Maxwell's criterion to analyze as long as possible in the 
currently established key. Fluctuations in the key prompt to compare the figures. In 
cases like this where the difference between the new found key and the previous one 
is very low, it is reasonable to stay with the previous key. 
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Another brief example, Handel's Sarabande from Suite No.16, coincidentally also 
in G minor, shows more clearly the limitations of applying the method to measures. 
Whilst the global key is again correctly identified as G minor, the measure-by-
measure calculation gives: 

Measure by measure results for Handel's Sarabande 

Measure   1 G minor   Measure 13 B-flat Major 
Measure   2 G minor   Measure 14 E-flat Major 
Measure   3 B-flat Major  Measure 15 B-flat Major 
Measure   4 F Major   Measure 16  B-flat Major 
Measure   5 C minor   Measure 17 C Major 
Measure   6 F Major   Measure 18  D Major 
Measure   7 C minor   Measure 19 G minor 
Measure   8 D Major   Measure 20 G minor 
Measure   9 G minor   Measure 21 C minor 
Measure 10 D minor   Measure 22 G minor 
Measure 11 D minor   Measure 23 G minor 
Measure 12 D Major   Measure 24 G minor 

 
This is a simple piece, and certainly it is not continuously modulating. The 

problem is due to the measures being too brief. Measure 2 only contains the G minor 
triad, measure 4 only the F major triad. Nobody could possibly guess better using 
only the information for the current measure. 

The method requires enough notes for the key to be established, just as any 
human listener would. As it is not possible, given the nature of music, to ensure  
that a certain time interval will provide them, the best solution would be to program 
an adjustable window to perform the calculation. In this way, the window would 
crawl forward adding new notes and at the same time dropping the oldest ones. The 
result of this process is an apparently continuous function that represents the value 
of the dot product of the shifting group of notes considered and the set of key 
numbers. 

As it has been mentioned, the structure of the measure in MusicXML does not vary 
with the format. This is certainly an inconvenience because programming a crawling 
window out of the information parsed from a measure is not an easy task. By and 
large, the notes in a keyboard piece come all mixed up. For instance, a chord is read 
from the bass up but this applies only the notes for the right hand. The part of the 
chord that belongs in the bottom staff only appear after the top one has been dealt 
with, so that ultimately the notes of a particular chord will appear spread along pages 
of XML code. In order to perform the calculation it is necessary to effect a format 
conversion. 

The programming of a crawling window has been carried out and applied to the 
Sarabande. The result is represented in Figure 1 in which the vertical lines correspond 
to the measures.  
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Fig. 1. Most significant keys for Handel's Sarabande from Suite No.16 

The width of the window yields the first result at the beginning of measure 7, 
which is the one represented first on the left. It can be seen that the key is B-flat 
Major up to measure 9, G minor until measure 11, D minor until measure 15, B-flat 
Major until measure 19 and G minor again until the end. This analysis makes 
musical sense, but the changes appear with a delay: the first change from B-flat 
Major to G minor shows at the end of measure 8 whereas in the score it clearly 
takes place at its beginning; the change to D minor shows midway measure 11 
whilst it happens at the beginning of 10; measure 13 begins in B-flat major but the 
program listing still has G minor at the beginning of 15. This last point is a precise 
reference that can be checked in the graphic. There is a triple crossing of the curves 
where the key changes from D minor to B-flat Major. This occurs in the score 
precisely at the beginning of measure 13 but the graphic shows it at three-fifths of 
measure 15. Finally, the last change from B-flat Major to G minor occurs at the 
beginning of measure 17. The graphic shows it with the same delay, one-fifth from 
the end of measure 19. 

Music can be construed as a multi-dimension function that varies in an arbitrary 
way. It is difficult to observe changes in one of its variables, hidden as it is by  
the noise created by the variation in all the others. In order to investigate the influence 
of the window width, the method was tried on a fictitious composition (see appendix) 
where the music alternates between a tonic chord and a briefer subdominant chord  
for four measures ( as a way to ensure the key is properly identified ).  It opens in  
C major, then at the beginning of the fifth measure switches to a distant key, C# 
minor, and so on. This "piece" was analyzed with a window of widths 10, 15 and 20. 
Figure 2 shows the results for the key of C major synchronized so that the horizontal 
axes coincide.  
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Fig. 2. Three window sizes applied to a fictitious composition 

As can be observed in the graphic, the level achieved by each curve and the 
magnitude of the delay are both proportional to the width of the window. The 
transitions begin at the same time but the wider the window the longer it takes to 
reach their steady state. It can also be readily observed that the delay to reach steady 
state equals the width of the window, a result that is not immediately obvious in a real 
piece. 
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Fig. 3. Narrow window applied to Scarlatti's Sonata in G minor 
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Fig. 4. Medium window applied to Scarlatti's Sonata in G minor 
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Fig. 5. Wide window applied to Scarlatti's Sonata in G minor 



88 H. Bellmann 

 

It is worth recalling that modulations are step functions. Determining the transition 
place with a window necessarily introduces an integrating effect, converting the step 
to a ramp.  

The same process was applied to the Scarlatti Sonata, using the same three 
different window sizes. They are shown with windows of increasing size, in Figures 
3, 4, and 5 respectively. It is easy to notice how noisy the short window is (Figure 3) 
which allows for a number of spurious "keys" to be identified. Notice the curves 
corresponding to F Major and E-flat Major, which briefly reach top value in Figure 3 
whereas in Figure 4 almost match top value and in Figure 5 are close but never get to 
the top. The medium-size window width seems just right (Figure 4). The wide one is 
the most stable but it perhaps rounds things too much, so that some tonicizations 
could be missed (Figure 5). 

In order to put the key information to practical use, the magnitude of the delay has 
to be taken into account. The width of the window has be large enough lest spurious 
transitions appear, and then the width considered to adjust the locations where they 
happen. Naturally, the optimum width will vary depending on the nature of the music, 
particularly in relation to the amount of different pitch classes present in the texture, 
as there must be enough for the dot product calculation to be meaningful. 

6   Conclusions 

The method of assessing the key of a musical excerpt as a point function by means of 
aligning it with a prototypical tonal set of key numbers is consistent and effective.  As 
it measures the extent to which a musical passage has "tonal shape", it essentially 
does the same job as a trained musician finding the tonic in a musical passage. Like 
with any other measuring instrument, what is being measured has to be known and 
understood for its results to make sense. Consequently, while it is possible to adopt 
default settings that are good for middle-of-the-road pieces, it is convenient to 
examine the music that has to be subject to the study in order to determine the optimal 
width of the measuring window. The resulting delay has to be considered to backdate 
the transitions. Thus, it can be adopted for musical analysis applications that require 
functional labelling of chords and scale degrees. It is also necessary to use the 
Maxwell criterion to reject modulations that are too brief when the difference between 
the new key and the previous one is small enough. 
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Abstract. This paper deals with the description of the design of an exhibit for 
controlling real-time audio synthesis with a wireless, IR-based interface. Re-
searching new way for playing and real-time controlling electronic music is to-
day's hot topic in the computer music field. The goal of this specific project 
consists of an enjoyable, robust and reliable exhibit that gives the possibility to 
constantly operate with young users (especially children) and, more in general, 
non-expert people. Our effort has been focused to carefully design the hard-
ware/software project, in a way that the final user will interact only with non-
critical parts of the system.  

1   Introduction 

Interactive electro-acoustic music proposes a complete new scenario not only for the 
new sound palettes introduced, but also for the new kind of relationships experienced 
by the audience between what-is-going-on on stage and the final musical result. While 
a traditional music instrument is a compact tool, the new electro-acoustic instrument 
is a system consisting of a number of spreads out components: sensors and control-
lers, computer and electronic sound generators, amplifiers and loudspeakers.  How to 
link information between the various parts of this exploded instrument is deeply cor-
related to new modalities of composing and performing in relationship with how the 
audience perceive and accept these new paradigms. While these new interaction 
methods for digital music and other multimedia are a hot topic in today’s research 
community, much of the work has remained out of reach for the general public [1], 
including children. The goal of our work is to use technology to support these meth-
ods of multimedia interaction for encouraging young people to more interactively 
explore music. The ISTI (former CNUCE and IEI) institute has deeply investigated 
this research field in the past years [4][5][6], so that it has been naturally involved in 
the realization of an educational exhibit based on a gesture music controller, shown in 
a local science park (Ludoteca Scientifica: http://www.ipcf.cnr.it/ludotecascientifica/). 

2   Requirements and Design 

This exhibit is mainly targeted for very young users, so it have to be designed follow-
ing some constraints [1]: 
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• Robustness of the hardware.  
• Robustness of the gesture detection algorithm. 
• User interface have to be designed to not only attract, but for keep hold of the 

child's interest. 

While the first point is rather obvious, the second ones imply that the software had 
to be designed to carefully and correctly respond to erratic and not logical actions, 
mostly ignoring them. At the same time it had to respond quickly and lively to all 
“logic” user actions. The last point is rather challenging, too. The whole exhibit de-
sign had to be complex enough to be fully discovered in a not too-short time but, also, 
its use had to be immediately understandable. As Jan Borchers suggested in [2], the 
typical user interface for this kind of exhibit should follow also some design goals. 
Basically, the GUI has to be: 

innovative: exhibits must attract passing visitors and “lure” them into explore the 
system.  

explorable: once the user has started to examine the system more closely, the inter-
face, especially the user guidance and navigation component, has to enable her or him 
to actively discover successive exhibit features, offering new, motivating experiences 
throughout the session. 

intuitive: this is a requirement for any interactive system, but with exhibits it becomes 
crucial: if visitors who stop in passing by to explore the system do not get along with 
it right away, they will walk on and leave the exhibit alone. 

non-technical: technical looking exhibits scare away visitors that are often computer 
novices. Especially an exhibit about music can provide a refreshing counterpoint in 
this environment if it manages to create a non-technical impression. This appearance 
can also stress our concern that computers should not dominate learning, but support 
it as creatively usable tools. 

fun: an important part of the exhibit message, especially when oriented to very young 
visitors, is that learning could become a more enjoyable experience. 

3   System Architecture 

The exhibit has been built around the last generation Macintosh computers, running 
MacOS 10.3.2. The whole system (fig. 1) is basically split in two parts: a user area 
and a restricted area. The first one includes all the parts accessible to the user: com-
puter monitor,  mouse and sensing device. The restricted area is accessible only to the 
exhibition personnel, and cannot be manipulated by the final user. 

3.1   Sensors 

Designing gesture interfaces based on infrared beams has been one of our activity 
during the past years. The most advanced device based on this technology is the Palm 
Drive (former Twin Towers): a sort of three-dimensional gesture interface, built 
around a matrix of infrared sensors. When the Palm Drive device has been carried out  
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Fig. 1. The system architecture 

 

Fig. 2. Distance to volts output curve of GP2D12 infrared sensors 

there weren't good integrated infrared sensors on the market, so we decided to use 
discrete components (infrared LED emitters and sensors). A special hardware to drive 
LED and managing AD conversion and multiplexing was also designed.  
In this present case we chose to use modern, integrated sensors instead of discrete 
technology: even if there is a loss in terms of design flexibility, the system develop-
ment is much more rapid and less critical. 
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The sensor used is the SHARP GP2D12 Infrared detector. This is a small sensor, 
typically used in robotics. Our sensing device consists of a 1-inch thick, linear, alumi-
num chassis, with 8 equally spaced infrared linear sensors of this type. This sensor 
takes over a continuous object’s distance reading and reports the distance as an analog 
voltage output, with a distance range of 10cm (~4") to 80cm (~30"), according to the 
law described in fig. 2. 

3.2   MIDI Conversion Board 

The role of the MIDI  conversion board is converting the analog signals coming from 
the sensors into standard MIDI messages. MIDI is a serial HW/SW protocol com-
monly used for interfacing musical instruments interface. 

Fig. 3. MIDI Conversion board block diagram 

We chose to use this standard protocol because a MIDI Management library al-
ready exists in the software development framework (see below). Instead of building 
ex-novo the hardware interface we decided to use a ready made one, an economic 
solution also in terms of efforts. The board we used is the MIDI Brain board from 
Paia electronics. We decided to use it because it’s cheap and easy to customize, even 
if its design is rather old. A block diagram of the board is shown in fig. 3. The analog 
to digital converter used in the board is the ADC0809, which easily accepts two refer-
ence voltage for the voltage conversion span. As said before, our sensors give an  
output voltage ranging from 0.2 V (object at 80cm) to 2.5 V (object at 10cm), so we 
adjusted these reference voltage to match this range. For that we used two multi-turn 
potentiometers, carefully adjusted in laboratory (during the final test) to the desired 
voltage span. In this way all the dynamic range of the converter has been used. 

4   Software 

The software of the system has been written in C++ with the XCode development 
environment for Apple MacOS X. This is the native, free, development environment 
available on MacOS X. The exhibit's software has been based on the pCM++ frame-
work, a C++ library of routines and classes (a framework) for digital audio signal 
processing and synthesis, developed in our lab. 
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4.1   The pCM++ Framework 

This framework [3] is a collection of classes and functions for real time musical 
applications. The user can describe the synthesis algorithm creating object from a 
set of predefined classes, which range from standard wavetable oscillators to digital 
filters plucked string models, etc. A set of typical effects like delays, reverbs etc. 
are also included. Routing and mixing between objects is performed using simple 
methods calls. In a way similar to the CSound metaphor, the algorithm(s) are  
inserted into a function called Orchestra. The controllable synthesis parameters are 
then linked to a “control rate” function called Score, again following the Csound 
standard approach. The main difference is that the program/composition is  
compiled rather than interpreted, so reaching a higher degree of effective sound 
processing. The framework has been written in Standard C++, so that it could be 
easily ported to other platform. In order to ensure this portability the framework 
makes use of the PortAudio and PortMIDI libraries [ref], commonly used as  
open-source and multi platform libraries able to manage audio signals and MIDI 
messages in real time. They provide basic functionalities for real-time buffering of 
audio samples and MIDI incoming and out-going messages. In the very simple  
example below we show how to create two sinusoidal oscillators and how to control 
their frequencies with the mouse coordinates. 

 

float       horiz,vert,valR,valL; 
oscillator  oscL,oscR;  
SimpleOrchestra  //synthesis algorithm 
{ 
 valL = Osc(oscL,horiz*500+50);  
 valR = Osc(oscR,vert *500+50); 
 outLR(valL,valR); //sends signals to DAC  
}  
 
 
Score 
 
{ 
 // set current orchestra 
 orchestra = SimpleOrchestra; 
 // only one section/movement.(a basic cycle) 
 movement { 
  //get mouse location 
  mouse(&horiz,&vert);  
 } 
} 
 

4.2   Application Architecture 

The exhibit application has been designed with a kiosk style user interface: 

• the user can interact with it only with the mouse (keyboard will be hidden) 
• the user cannot switch to other applications 
• the user cannot switch off the application or the OS. 

Following these guidelines, the user interface has been carried using the Carbon para-
digm, the procedural interface to the Mac OS  X system. 
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Fig. 4. The graphical user interface of the system 

As shown in fig. 4 the user can interact with the application by clicking on one of 
the six icon-buttons of the main panel. The first five buttons allow the user to change 
the synthesis algorithm (presets) while by clicking on the last one, a short movie  
(in the area above the buttons) that shows the gesture modality of interaction for the 
current preset, is played. 

This GUI has an obvious interaction with the lower level of the application  
(fig. 5), mostly based on pCM++. The audio engine, based on PortAudio, is always 
running, making use of the pCM++ audio synthesis support in the algorithm written in 
the Orchestra function. The MIDI data coming from the sensing device data (we use a 
common MIDI-USB converter for the connection) are collected by the PortMIDI  
library and transformed into synthesis parameters in a modality written in the Score  
function, according to the current algorithm/preset. 

The two functions (Score and Orchestra) run as two concurrent processes (fig. 6), 
at different rates. It is important to note that the Orchestra function is called at each 
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audio buffer switch. In our case the audio buffer is 256 samples long so that, using a  
44100 kHz sampling rate, the Orchestra function is called every 5.8 msec. The rate of 
the Score function depends on the computer performance and it is not predictable 
(even we can force a maximum rate): it simply has to be fast enough to ensure a small 
latency between the gesture and the consequent sound modification. 

Fig. 6. Score and Orchestra concurrent processes 

4.3   Interaction Models Archive and Retrievals 

Even if this exhibit includes only 5 selectable audio examples, each with a different 
ways of interaction, we conceived it as a sort of archive in a way that it could be eas-
ily expandable in future versions of this system. Each example is described in a sort 
of logical record we called “interaction model”, which describes both the synthesis 
algorithm used and the required gesture for controlling the related definition parame-
ters. These models are then organized in a simple structure so that they could be eas-
ily and efficiently retrieved in case of a bigger archive. 

The mini-archive of this exhibit includes the following 5 presets/interactio models: 

Theremin: Simple simulation of the classic theremin (a pure sinewave), with an  
additional vibrato. One hand controls the amplitude while the other one can control, 
vertically, the frequency and horizontally the vibrato amount. A hall reverb is added 
as a final effect. 

FM: A 3 operators cascade FM synthesizer. Left hand (more precisely, left  half of 
the device) controls the main frequency (vertically) and switches between a set modu-
lators frequency ratio (horizontally). The right hand controls amplitude (vertical) and 
modulation index (horizontal). A stereo delay is also added as an effect. 

Water drops: A sample-player synth. The sample used is a water drop loop. 8 voices, 
with diatonic scale “pitches” are linked with each single IR sensor.  The amplitude of 
each voice is controlled by the vertical position of the hands. A stereo delay, plus a 
large hall reverb are added as effects. 

Harp: Based on a modified version of the classic Karplus-Strong plucked string algo-
rithm. 8 different notes (diatonic scale) are assigned to each sensor. Hands move-
ments trigger the harp sounds. Once the note has started, the vertical hand movement 
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can slightly control the note amplitude and brightness. Also in this model a stereo 
delay and a large hall reverb are added as effects. 

Storm: Similar to the water drops preset. Instead of the tuned water drops here we 
used a “spectacular” set of storm sounds: wind, rain and various kind of thunders are 
assigned to different sensors. As we experienced in previous prototypes, children love 
this preset. 

5   Evaluation and Conclusions 

A first version of this exhibit has been installed for a month in the Ludoteca Scien-
tifica (a temporary science park for children) right inside the historical center of Pisa. 
About 6000 children visited the exhibit during the whole month.Reactions of the 
young users has been very good: it seems the exhibit is very fun to use. Less young 
users and adults continuously asked for more detailed technical information. For this 
reason we decided that in a future version of the exhibit we’d put a small sticker with 
additional technical information, explained with simple terms, beside the exhibit loca-
tion. The short-video demonstration was not intensively used: in case of first-
approach problems visitors preferred to ask help to the science park personnel. As far 
as robustness is concerned we found that the project was well made: indeed, hundreds 
of young users used the system 8 hours per day, and no operating faults have been 
encountered. We also thought to a possible variation of the system in which the “artis-
tic” aspect is highlighted for example by adding some form of video graphics. In this 
case it could be also presented in modern art galleries and exhibitions. 
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Abstract. Metris is a version of the Tetris game that uses a player’s musical re-
sponse to control game performance. The game is driven by two factors: tradi-
tional game design and the player’s individual sense of music and sound. Metris 
uses tuning principles to determine relationships between pitch and the timbre 
of the sounds produced. These relationships are represented as bells synchro-
nised with significant events in the game. Key elements of the game design 
control a musical environment based on just intonation tuning. This presents a 
scenario where the game design is enhanced by a user's sense of sound and mu-
sic. Conventional art music is subverted by responses to simple design elements 
in a popular game. 

1   Introduction 

In Metris the person playing the game is also a musical performer. The manipulation 
of sound events is an integral part of the game strategy. In the design of the sounds, an 
arbitrary choice has been made to synthesise bell tones based on a Japanese temple 
bell. The sound design is an extension of work done by one of the authors [1]; game 
design extends interactive strategies developed by the other author in ‘Medium Rac-
ing’1 and ‘The Singing Jacket’ [2], [3]. The sounds used in Metris have partials that 
are based on the natural harmonic series. Musical scales used are also determined by 
the harmonic profile of the bell.  

The sound trajectory provokes a musical reaction to the player’s performance in 
the game. In this way, a player is presented with an environment for improvisation 
that is based on the simple rules of the game. 

2   Game Design and Composition Practice 

A musical composition is like a game in that the rules and parameters to control the 
structure of an aesthetic experience are devised prior to its realisation in performance. 
In a musical work, the composer specifies how these rules and parameters should be 
realised by a performer over time and an ideal performance is a manifestation of the 
composer’s artistic intentions. In a game, however, it is the player who determines its 
trajectory.  
                                                           
1  Performed at Sonic Connections, University of Wollongong, Australia (2004) http://www. 

uow.edu.au/crearts/SonicConnections.html 
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2.1   Game Design and Algorithmic Composition 

Computer games are no different from other types of games in catering for a wide 
range of technical abilities. Metris provides an accessible environment for musical 
improvisation through the principles and interface of a game. The experience is in-
tended to remain rewarding at all levels of play. 

Work has been done by others to explore the audio synthesis and manipulation 
possibilities of using game control information. This is often realised as adaptations of 
existing game engines to create sound worlds through which a performer can navigate 
[4], [5]. Sound is controlled by both interpretation of input events and progression 
through the world. This process characterises the relationship between the game  
performance and audio creation as a one-way data stream. Other attempts at generat-
ing sound from visually represented algorithms include processes based on Cellular 
Automata (CA) behaviour [6], [7], [8], [9], [10], [11], [12], [13]. Like most CA  
visualisations, Tetris is realised as cell behaviour on a grid and as such could be con-
sidered a candidate for similar methods of sonification. The timbral and harmonic 
characteristics of the resultant music, however, are often limited by realisations in 
MIDI and an arbitrary mapping of algorithmic data to a twelve-tone equal tempera-
ment. Moreover, in both cases, mapping is mono-directional and the musical result is 
not based on any attempt at interpreting an individual’s reaction to the relationship 
between audio and visual. 

Metris solves these problems by controlling real time aspects of the sound through 
the game play itself rather than its visualisation. Tuning principles of just intonation 
are adapted to determine the timbre of the instrument as well as the pitch material. 
The player learns to recognise connections between game movements and musical 
outcomes. Game decisions are based on the player’s reaction to both visual and  
audio. 

2.2   Game Actions and Musical Reponses 

The game responds musically in a number of ways. While the musical output is a 
direct result of game play, the organisation of pitch and timbre creates something 
larger than the memory of individual events. Musical responses to events are crafted 
so that the sound is affected in different ways depending on the nature of the game 
event: minor events affect the sound in a subtle, repeatable way (such as microtonal 
pitch bends when a game block is rotated); major events have a more dramatic effect 
on the entire sound design (such as a distinct texture modification when a row of 
blocks is removed). 

The player has far greater control over the total sound because of the way different 
events are interpreted than if game actions were mapped to discrete musical re-
sponses. Game design manages individual actions within the context of the entire 
game; a cohesive relationship is developed between the nature of game play and the 
creation of sound. This is a reflection of our use of game design principles to control 
the player’s interaction rather than interactive paradigms traditionally found in con-
temporary art music. 
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3   Real Time Bell Synthesis 

In order to have control over the tuning and textural composition of a bell at any time 
during the game, a real time synthesis process was developed in Java. Java was cho-
sen for its portability, but requires a more careful management of resources than a 
lower level language like C or C++. Real time audio techniques developed for the 
Pocket Gamelan project [14], [15], where J2ME code manages audio performances on 
mobile phones, form the core of the audio generation in Metris. For performance and 
control reasons, no third-party Java audio packages are used. 

A bell is defined as a collection of harmonically related sine tone generators with 
an associated collection of amplitude envelopes. This replicates earlier attempts to 
create digitally synthesised bells using Csound where an instrument object encapsu-
lates the partial frequencies and amplitude relationships of a particular bell [16]. The 
frequencies are taken from the five most prominent partials of the harmonic spectrum 
of a Japanese temple bell, namely the 2nd, 5th, 7th, 9th and 11th harmonics [17]. These 
harmonics are also used to generate the tuning system for the game. The envelopes 
must match the sampling grain of the generators to create an accurate synthesis.  

Whenever a bell is struck, it is added to the audio output stream as part of a collec-
tion of any currently sounding bells. When a bell is read, each oscillator uses a current 
version of its frequency and amplitude envelope to determine the correct value. The 
amplitude envelope is stored as a set of floating point values in the same way a linseg2 
is constructed in Csound. Because this is applied to the sample ‘on the fly’ rather than 
as a pre-computed array, the envelope, along with the frequency of any of the partials, 
may be changed at any point in the duration of a bell tone. The envelope is then ap-
plied to each of the partials at the moment each bell rings.  

4   Metris Music 

4.1   Tuning 

The same harmonics used to generate the timbre of bell sounds were used to determine 
pitch material for the game. Each of the seven Metris game blocks consists of  
four squares. In keeping with this, a seven-note just intonation scale was generated by 
connecting two four-note chords (tetrads) based on harmonics found in the bell timbre.  

Fig. 1 shows the formation of a scale generated from harmonics 2:5:7:9. The frac-
tions represent musical intervals in just intonation by indicating the separation be-
tween any two pitches on the natural harmonic series: the numerator is the higher 
pitch and the denominator is the lower pitch. For example, 5/4 represents an interval 
of a major third; this occurs between harmonic 5 on top and harmonic 4 below, as can 
be seen in Fig. 2 which shows the first 16 pitches of the natural harmonic series of C2. 
Similarly, 7/4 is a harmonic seventh; 9/8 is a major whole tone, and so on. The unison 
is represented as a fraction where the two pitches are identical, usually 1/1.  

                                                           
2 Following the conventions for linseg opcode defined in Csound http://www.csounds.com 
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      upper tetrad 
       

      9/8 : 45/32 : 63/32 : 81/64 
1/1 : 5/4 : 7/4 : 9/8       

       
lower tetrad       

Fig. 1. Construction of a seven-note bitetradic scale generated from harmonics 2:5:7:9. The 
scale consists of two conjunct tetrads containing the same intervallic structure. 

 
Fig. 2. Natural harmonic series (first sixteen harmonics) on C2 [18] 

The pitches of the two tetrads shown in Fig. 1 are normalised to produce the scale 
shown in Table 1. The ratios that appear in the second column of the table represent 
points on the natural harmonic series as described above. The labels that appear in the 
third column are the historical names given to intervals as found in many musical 
traditions. The linear factors that appear in the fourth column are calculated by divid-
ing the numerator by the denominator of the ratio. These linear factors are then used 
to calculate the frequencies of each pitch in relation to the unison of the scale; for 
example, if Pitch 0 is 440Hz, Pitch 1 will be 495Hz (440Hz x 1.125). 

Table 1. Intervals of bitetradic scale with generators 2:5:7:9 

Pitch Ratio Interval above tonic Linear factor 
0 1/1 unison, perfect prime 1.000000000 
1 9/8 major whole tone 1.125000000 
2 5/4 major third 1.250000000 
3 81/64 Pythagorean major third 1.265625000 
4 45/32 diatonic tritone 1.406250000 
5 7/4 harmonic seventh 1.750000000 
6 63/32 octave-septimal comma 1.968750000 

 
In Metris, each pitch of the seven-note scale thus derived is assigned to one of the 

game blocks as shown in Fig. 3. In this way, by using a scale generated from the same 
harmonics found in the overtones of the bell, the instrumental timbre is reinforced by 
the tuning in which it plays. 
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Fig. 3. Pitches 0 to 6 of bitetradic scale allocated to each of the Metris game blocks 

The lower and upper tetrads in Fig. 1 are identical chords that consist of the same 
intervallic structure but transposed so that the highest pitch of the lower tetrad doubles 
as the lowest pitch of the upper tetrad. This method of constructing a scale is a varia-
tion on John Chalmers’ tritriadic scales [19], [20], [21]; such a scale is labelled a 
bitetradic scale following the naming system used in Scala, a tuning software pro-
gram developed by Manuel Op de Coul [22].  

4.2   Modulation 

The Metris game screen consists of 20 rows divided into four subsections of five rows 
each. These subsections determine regions of harmonic modulation in the game. If a 
block lands somewhere on the bottom five rows of the screen, notes from the original 
bitetradic scale with generators 2:5:7:9 (Table 1) will be played. If a block lands in a 
different section of the screen, pitches from another harmonic region will be played.  

Modulation occurs from the original scale to other just intonation bitetradic scales 
built from different harmonic generators as shown in Fig. 4. Each step of the modula-
tion introduces new intervals with higher prime-numbered harmonics3 [23]. The 
original scale (bottom left of Fig. 4) and the first modulation are generated from har-
monics that are present in the overtone series of the bell (harmonics 2, 5, 7, 9 and 11). 
The compatibility between the tuning of these scales and the timbre of the instrument 
reinforce each other, an idea demonstrated by William Sethares using scales derived 
from spectral analyses of real sounds [24]. Furthermore, the musical design of Metris 
includes the possibility of using scales that are not necessarily compatible with the 
harmonic profile of the bell. This is explored in the second and third modulations: 
Scale 2 includes harmonic generators that are foreign to the overtone series of the bell 
(harmonics 13 and 17) and Scale 3 is built from harmonic generators that are entirely 
unrelated to the harmonic profile of the instrument. When a game block lands in these 
higher harmonic areas, beating and difference tones are heard as a result of the in-
compatible tuning and timbre.  

Pitches for all the modulations are represented in Fig. 4 as ratios and frequencies 
relative to the tonic of the original Scale 0. Each new scale in the series of modula-
tions has a number of pitches in common with the previous scale; these pitches (and 
their octave displacements) are indicated in the diagram as shaded boxes. As the 
 

                                                           
3  Harry Partch used the term limits to describe an audible characteristic of just intonation tun-

ings that is related to specific prime-numbered harmonics. A scale belonging to a particular 
prime limit has a distinctive hue that makes it aurally distinguishable from scales with other 
limits.  
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Fig. 4. Modulation regions in Metris: pitches from different scales are heard depending on 
where a game block lands. Ratios and linear factors are represented in relation to the tonic of 
Scale 0. 

modulations move further away from the tonic, more complex ratios are involved and 
the intervals formed have no historical precedents. While playing the game, the user 
has the opportunity to move around different modulation regions depending on where 
they choose to land the game block. 

5   Game Play and Audio Responses 

Tetris has a limited number of options for controlling the performance of the game.  
A player can rotate the block either clockwise or anti-clockwise to place it in an  
effective way, and can move the block along the x-axis of the grid. The movement of 
the block downward is controlled by the speed of the game and is usually related to 
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the level of difficulty, although a player can accelerate the downward progression of 
the block. 

The game has different levels of achievement. At its most basic, the objective is to 
remove lines of blocks by filling an entire row. More points are awarded if more than 
one row is removed at a time. This introduces the possibility for daring game play and 
the soundtrack is designed to reward the player accordingly, as outlined below.  

5.1   Rotation 

When the player rotates a game block a copy of the fundamental partial of the previ-
ously struck bell is created and its frequency is adjusted +/- 3Hz. The direction of the 
microtonal pitch shift is determined by the direction of the rotation: A 90°clockwise 
rotation raises the pitch by 3Hz and a counter-clockwise rotation lowers the pitch  
by 3Hz. 

5.2   Row Completion 

When the player succeeds in completing an entire row of blocks, a sine tone texture 
bank (20 random sine tones) with a range proportional to the number of rows re-
moved is played, thus destabilising any remaining tones. 

5.3   Controlling the Next Block 

Block creation in Tetris is usually determined by a random algorithm. Metris, how-
ever, recognises that a player may intuitively or otherwise wish to control the pitch 
selection in their playing. This is enabled by using the distance between the last two 
block placements as a percentage of the total screen size, then using that as an index 
to select the next block. The only exception to this is when a block lands and it over-
laps with the previous block, in which case the same block is created. This was de-
cided because the authors found repeated blocks would illuminate other aspects of the 
game function. 

6   Performance Scenarios 

The performance presentation of Metris can take many forms. One possible scenario 
involves Metris responding to sounds made by an instrumentalist. Metris has also 
been adapted for a multi-player format called Battle Metris. 

6.1   Battle Metris 

Battle Metris adds to Metris by allowing one player’s game play to affect another 
player. The music production system is adapted to allow the sonic realisation of the 
conflict between players. The new sound represents a player’s fortunes in the game 
and thus links the players’ and audience’s perception of the progression of the game.   

When a player (A) removes enough rows to add them to the bottom of their  
opponent’s (B) screen, player B’s soundtrack is altered. A signal created from the 
amplitude-modulated sum of the partials (the AM signal) is added to the audio mix. 
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The AM signal is implemented in Battle Metris by multiplying all the partials from 
each bell. However, the amplitude envelopes of the partials are ignored; a partial is 
included in the signal multiplication at full amplitude until it is due to end. Removing 
the effect of the envelopes creates a significant distinction between the Japanese tem-
ple bell sounds and the AM signal. 

The volume of the existing signal (the sum of the bells) is decreased to accommo-
date the volume of the AM signal, which is determined by the number of rows added. 
The partials used to create the AM signal no longer implement their amplitude enve-
lopes; this creates a rich, oppressive sound. The oppressive quality refers to a sine 
tone with a slowly rising frequency multiplied with the AM signal, imitating the ef-
fect of the endless glissandi of Risset’s implementation of a Shepard tone [25]. In the 
context of this game, the aural effect of the endless glissandi is similar to that of a 
motivator like a count-down timer in a typical digital game, in that it puts the player 
under pressure.  

Player B can only decrease the volume of the AM signal in their mix by removing 
rows. The rich set of partials in the AM signal sets up beating patterns with the output 
of player A’s channel. This is sonically exciting for the audience and player A; ex-
perience has shown it increases the level of stress in player B, as their immediate 
focus shifts to reducing the level of the AM signal in their mix. The oppressiveness of 
the AM signal complements the addition of rows as a negative effect on player B’s 
performance. 
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Abstract. Sound synthesis using granular (or micro-sonic) techniques offers 
very attractive possibilities for creating musical sounds. We present a state of 
the researches conducted at GMEM for an integrated microsound synthesis sys-
tem. This system includes at once synthesis generators and synthesis control 
programs, both gestures and sound analysis based control. 

1   Introduction 

Sound synthesis for musical applications was for long time related to sound partial 
decomposition. But with the use of computers, spectrum based synthesis showed its 
limits. A simple spectrum is not enough for describing a musical sound (as noticed 
Tristan Murail [6]). Even for dynamical analysis with sophisticated resynthesis tech-
niques, it appears difficult to create various sounds with additive synthesis (except in 
some sophisticated specials tools like those realized at CNMAT [4]).  

Additive synthesis and subtractive synthesis were very often used during the 70ties 
but were putted in the background during the 80ties by FM synthesis. FM synthesis is 
a very economical and powerful techniques but not very intuitive to use. It can’t be 
related to an analysis technique so it needs very complex studies for producing well-
controlled sounds [5]. Another foreground technique in this period was the physical 
models. This techniques allow to create very realistic sounds but are difficult to con-
trol and limited to “pseudo physical” sound. They are not very general techniques.  

That’s why in the 90ties, sound synthesis was in disgrace, while sampling and 
sound processing were in progression in every styles of music. Main of the tools for 
Computer Music were plug-ins for sound processing and very few of them were con-
cerned by sound synthesis (essentially old synthesizers imitating).  

Now, it seems that one sound synthesis technique emerges : the granular synthesis. 
Introduced 20-30 years ago by composers like Iannis Xenakis, Curtis Roads[12] and 
Barry Truax, it was rarely used in real-time (except with very fast machines [15]) 
usually with Music N programs (like Music V or Csound) because of the calculation 
cost. With the last generation of computers, a lot of real-time programs offers granular 
synthesis techniques (Max/MSP, Pd, Supercollider). Granular synthesis expect the 
control of a very large quantity of data. Must of the programs mentioned below are 
using statistical techniques to control the synthesis.  



 Strategies for the Control of Microsound Synthesis Within the “GMU” Project 111 

At Gmem, we propose a very efficient granular sound generator and different ways 
to control the synthesis, from uniform random generation, to analysis based statistical 
control. The GMU project (GMEM Microsound Universe) started at GMEM in 
2003[11]. Furthermore, we have built in Octave1 and Lastwave2 some tools for ana-
lysing the distributions of sound particles in noisy sounds. Finally, using Open-
Music3, we have developed a new library to process the analysis data and to control 
sound synthesis with Csound4 or Max/MSP5. Examples of the utilisation of these tools 
in musical situation will be presented. 

2   The Sound Generator 

We have developed various sound generator for Max/MSP [11] . The last of them, 
bufgranul~ , is the most general. It was written by Charles Bascou (previous versions 
by Loic Kessous and Laurent Pottier, Windows XP version by Leopold Frey). This 
object must be used with three arguments : the sound buffer, where the sound grains 
are picked, the envelope buffer that describes the grain envelope and the number of 
outputs for sound spatialization.   

 

Fig. 1. The “bufgranul~” object and the buffers associated 

The generator has been optimized because granular synthesis required often high 
polyphonies. On a PowerBook G4 867 MHz, it uses 30% of CPU with 100 grains and 
75% with 300 grains.   

2.1   Parameters 

The inputs for the bufgranul~ object are the following: the triggering of grains real-
ized with a zero-crossing signal (can be periodic or not); the reading position inside 
the sound sample (begin parameter); the detune parameter, the amplitude of the 
grain, its length, its stereophonic position, the distance position of the source (ac-
cording to Holophon spatializer algorithm [8] and the number of the buffer where the 
sound is stored (each grain can come from different buffers). 
                                                           
1  Octave: GNU software by J. W. Eaton. 
2  Lastwave: software for signal processing by Emmanuel Bacry. 
3  OpenMusic (OM) is the Ircam visual programming environment for creating computer aided 

composition applications. 
4  Csound: software synthesis program (MIT) by B. Vercoe. 
5  Cycling74/Ircam. 
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Fig. 2. The “bufgranul~” help patch 

Sounds produced by the help patch are sounding mostly “electronic”. The idea of 
“notes” disappears replaced by a continuous flow of sound. For producing lively or 
natural sounds, all parameters must be modified all the time. So we need continuous 
controllers or automatic rules that produce flows of data. 

2.2   The VNS Gesture Control 

An example of a very effective way of changing parameters all the time is to use a 
video camera placed in front of a performer. We are often using the VNS6 software 
inside Max/MSP [10]. Each small movement of the performer in different regions of 
the camera field can be traduced in values for the control of the synthesis. VNS is a 
very fast software (as fast as video can be) and very precise (a resolution of 20 bits 
per region!)  

 

Fig. 3. The “bufgranul~” generator controlled by motion and presence of a performer using 
VNS software 

The patch below was realized with the French composer Andre Serre-Milan for its 
interactive installation “Public Space 1” in December 2004.7  
                                                           
6 Video processing library for Max/MSP by David Rokeby. 
7 Commande de ART ZOYD, coproduction ART ZOYD-Maubeuge / GMEM-Marseille. 
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Fig. 4. The “bufgranul~” generator controlled by motion and presence of a performer using 
VNS software 

The presence of the arm of the performer in region number 2 controls the reading 
position in the sound sample. In region number 4, it controls the length of the grains. 
Motion in region 3 controls the detune parameter (pitch).  

2.3   The VNS Graphic Control 

Some researches have been introduced for the control of sound synthesis parameters 
with pictures and video films. 

In the first case, a slider controls the horizontal position of a vertical line that 
moves on a tree picture. This line is divided into 128 segments, in which the variation 
of light intensity is measured. Each value higher than zero triggers a grain. The ampli-
tude of the grain depends on the light variation in the segment. If a group of 
 

 

Fig. 5. A tree picture scanned for the control of sound synthesis 
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adjoining segments is excited, the pitch is going down (detune) and the amplitudes of 
the segments of the group are added. The panoramic parameter is directly set with the 
position (left <--> right) of the segment. So, little boughs produce high small sounds 
and the trunk produce a loud low sound. 

Another test was done with a non-figurative video film. In this film, white geomet-
ric figures were twinkling. They were more and more numerous and smaller and 
smaller. With the same method as previously described, we just played the film and 
for each geometrical figure, a grain was triggered. The resulting sound was a little 
polyphony at the beginning and was like a complex noise at the end. 

 

Fig. 6. Five moments in the video film that control the sound synthesis (image by  
A. Liberovici, in his piece “Integral”) 

3   Probabilities Graphical Control 

3.1   Ircam GIST and Chant 

The GMU project was influenced by first experiences we have done at Ircam in 1995 
with the Gist software [13] on the Next ISPW music workstation. In the Gist  
 

 

Fig. 7. Statistical control of 3 parameters (offset = begin time, transp = detune, debatt = attack 
time) on the fog~ synthesizer. This patch was created for an installation of C. Ikam and J. B. 
Barrière “Le Messager” [8]. 
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software, Gerhardt Eckel wrote a fog~ object, extension of the fof~ generator used 
specially for singing voice synthesis. 

The fof~ and fog~ objects still exist on Max/MSP. Francisco Iovino and Richard 
Dudas wrote famous patches for the control of the parameters of the synthesis so all 
the rules discovered by Xavier Rodet [14] are now available in Max/MSP. 

3.2   Probabilities Uniform Distribution 

As on the Ircam ISPW, the first way to control automatically a flow of varying syn-
thesis parameters that we implemented, was the statistical uniform distribution. This 
was made with the participation of Jean-François Oliver. 

In this program, the range of the values has to be set for each parameter (min and 
max values) and a random generator chooses values in this area. The triggering of the 
 

 

Fig. 8. Max patch for a stochastic control of the synthesis (uniform distribution) 

run the random
process

selected area (where
values are picked)

current value

 

Fig. 9. A single block for the control of one parameter 
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grains can be periodic (with a given frequency) or not (a random value is added to the 
frequency).  

3.3   Graphical Distributions 

Uniform distributions are sounding always something like “grey”. So we decided to 
ameliorate the statistical control of the parameters. Charles Bascou has developed a 
new graphical interface for settings the probabilities of a group of values. 

 

Fig. 10. Max Patch for a stochastic control of synthesis (with probability curves) 

run the random
process

values

probabilities

current value
` 

Fig. 11. A single block for the control of one parameter 
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With this program, the user can choose different curves for each parameter. Curves 
can contain only few values (like for the “begin time” or “pan” parameters in figure 9) 
or a continuous curve of values (like in figure 10 for the “detune” parameter). 

The triggering of the parameters is done with a signal wave each time that the sig-
nal is crossing zero. If the signal is a simple oscillator with a constant frequency, the 
triggering is periodic.  

In the next chapter, we will describe analysis tools. The data given by the analy-
sis can be used for settings the probability curves (like for “length” parameter in 
figure 9). 

3.4   Discussion 

The control of sound synthesis in a stochastic way is very powerful. You can combine 
stochastic control of some parameters and deterministic control of other parameters.  

For a recent work, we were using GMU for real time delaying and transposing 
sound produced by acoustic instruments8. We recorded the sound in a buffer (in loop 
mode) and then triggered grain at a “begin time” minus the desired delay. The trigger-
ing period was set to 25 ms and the length of the grain to 75 ms (3 times the period). 
The detune parameter was set to the desired pitches. Other parameters were constant 
or statistically distributed.  

Microsound synthesis is a very efficient technique for the transposition of sounds 
without varying time. 

The patches we have presented here, allow producing a great variety of sounds. 
They can be used as a polyphonic sampler (if the length parameter is equal to the 
length of the sampled sound) and they can be used to produce clouds of sounds, when 
the polyphony is high and the sizes of the grains small. 

Microsound synthesis allows you to explore the transition between rhythm and fre-
quency (triggering the grains near 10 to 50 Hz), between crunchy grains (envelope 
sizes less than 50 ms) and smooth grains and between spatially localised grains (fu-
sion) and dispersed grains9. All these explorations can produce very strange and inter-
esting effects on the perception. 

4   Analysis-Synthesis 

The exploration of sound synthesis is endless. The problem with this type of synthe-
sis, for composers, is the lack of references. That is why we wanted to study natural 
sounds to establish rules for the control of the GMU synthesizer. 

                                                           
8  You can record a sound in a buffer~ (memory space in RAM) and play with buffgranul~ the 

wave stored in this buffer. Obviously, there can be a delay between writing and reading, espe-
cially if you want to read faster than you write (“detune” value higher than 1). The 
buffgranul~ object can loop in a buffer. That means that if you begin to read a grain at the end 
of a buffer, it jumps to the beginning of the same buffer. It allows reading and writing with 
loops. 

9  The grains produced by the bufgranul~ object can be sent each one on different outputs (up to 
16 outputs). 
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4.1   Iana Analysis Synthesis 

Few years ago, we have experimented a Terhardt algorithm that can be used to extract 
the most pertinent partials from musical sounds [7]. This algorithm were programmed 
(and named “Iana”) by Gerard Assayag and further ported on the Ircam software 
Audiosculpt.  

In 1993, with the help of Xavier Chabot, we implemented at Ircam the “spdata” li-
brary  for the PatchWork10 environment. This library was done for reading and proc-
essing spectral data, for sound synthesis. 

With this library, we could read Iana data, process them and do the synthesis with 
small grains (the size of the step of the analysis). It was used by the American com-
poser Joshua Fineberg for his piece “Paradigms” (1994). 

Since the Iana algorithm was ported on Max/MSP by Todor Todoroff, we have im-
plemented an interface between Iana and bufgranul~ to realize in real-time the sound 
analysis and the sound synthesis.  

4.2   MP Analysis Synthesis 

We wanted to find another technique for analysing sounds, allowing analysing noisy 
sounds (sounds without well defined partials) and representing signals with simple 
sonic entities localized in time and frequency.  

We have look at the Matching Pursuit algorithm [3] that we have extended toward 
a sound decomposition on a set of arbitrary microsounds [2]. 

The idea of Matching Pursuit is to use a dictionary of functions to represent in a 
compact way a wide range of signal time-frequency behaviours. The traditionally used 
dictionary is a set of symmetric Gabor atoms indexed by their frequency and duration. 

It leads us to a granular decomposition method onto a set of arbitrary microsounds. 
Each microsound is described by a list of five parameters: time, duration, amplitude, 
frequency and phase. 

 

Fig. 12. The representation of a water sound with the Matching Pursuit algorithm 

For some types of sounds (like water sounds), we can obtain a good description of 
the sound with 500 to 1000 grains per second. 
                                                           
10  PatchWork (PW) was, before Open-Music, the main Ircam program for computer aided 

composition. 
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We have then realized a new library for Open-Music during a residence of the 
composer Tristan Murail at Gmem (2004-2005). It contains functions for reading MP 
analysis, writing Csound scores and process large quantity of data. A lot of programs 
have been written for modifying the data before doing the synthesis. 

4.2.1   Proliferation 
The first problem was to extend the duration of the analysed sound. Two algorithms 
have been proposed. 

In the first algorithm we are doing random access of grains in the data file. The 
global density (number of grains per second) is preserved. This algorithm is simple 
but we lose the time progression of the grains distribution in the original sound.  

The second algorithm begins with a segmentation of the data files during time. We 
then obtain a curve that gives the grains density d = f(t). 

 

Fig. 13. Grain density curve of the analysed sound (water sound) 

In a second step, we are doing random access of grains in a portion of the data file 
that progress in a way proportional with the desired duration of the synthesized sound. 
The densities are varying according to the density curve.  

With this method, we can stretch a sound with great factors without problems (like 
x100 or x1000). 

This method can be extended. We can use a curve to indicate how we want to walk 
inside the data file during time. For example, if we have a sea wave sound analysed 
(ebb and flow), we can create a realistic sound that can play all the time without  
repetition. 

4.2.2   Grain Durations 
The durations of the grains obtained with the analysis are often very contrasted. Short 
grains can be shorter than 1 ms, other can be longer than 100 ms. 

The rules of these different grains are very different for the perception. The short 
grains are involved in the transient sound perception. The longer are involved in the 
pitch and partial perception. 

Modifying the durations of the grains allows to get new sounds that are percep-
tively very different from the originals but with a coherent organisation. The modifi-
cation can be very progressive. 

You can scale the durations but more often we have used a transfer function. 
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In (ms)

Out (ms)

 

Fig. 14. Transfer function for the duration of the grains (here small durations are extended) 

4.2.3   Filtering 
For long grains, the frequency of the wave can be modified which allows producing a 
filtering effect. 

We have used the Tristan Murail libraries to modify the frequencies. Two func-
tions were specially used: 

- the “dist-frq” function that can distort one chord (parameters are scale-lower, 
scale-higher and transpose) 

 

Fig. 15. “dist-frq” applied on a chord with two sets of values 

- the “vocoder” function that sets all the notes of a source chord to the nearer note 
fund in the filtering chord.   

 

Fig. 16. “vocoder” apply a filter to a chord 
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We have filtered analysed sound with simple chords or with other analysis (typi-
cally Iana analysis or partial analysis). In the second case, we obtain crossed synthesis 
with very particular characteristics. 

Tristan Murail has used these sounds for his piece “Pour adoucir le cours du 
temps” created in Marseille with the Prague Philharmonia, on the 21 May 2005 dur-
ing the festival “Les Musiques”. 

4.3   SMP Analysis Synthesis in Max 

The temporal domain signal model, used in MP, shows its limitations in this purpose 
especially with grains containing a significant stochastic part. From here comes the 
idea to work in the frequency domain for the decomposition process. 

The principle of adaptative granular decomposition of the MP is conserved. The 
main idea is, rather than working with the temporal signal, to use his spectrogram for 
signal/atoms distance calculation. 

The analysis produces very realistic sounds when the reference atoms can be well 
identified (this is done manually until now). We have implemented the possibility to 
do the synthesis with the analysis data inside Max/MSP, with the “bufgranul~” object. 
No musical application has been done yet. We are at the beginning of the researches 
on this topic but, no doubt, there is a large area to explore in this direction.  

5   Conclusion 

Granular synthesis is a powerful synthesis technique that can produce very different 
kinds of sounds. Controlling only few parameters can produce very interesting and 
musical variations of the sound. Inside the GMU project, we propose three connect-
able linkable ways of controlling parameters : graphical stochastic distributions, 
Composition Aided Functions for hybridizing of statistical distribution and musical 
scores and statistical correlated stochastic distributions extracted from natural sounds 
by Spectral Matching Pursuit analysis. We propose now a alpha version of the GMU 
software (bufgranul~ object and Max/MSP associated patches). The analysis tools 
have to be rewritten as a stand-alone application soon. The Computer Aided Func-
tions will be available soon as a new library for Open-Music. 
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Abstract. This paper presents our work on building low-cost music
controllers intended for educational and creative use. The main idea was
to build an electronic music controller, including sensors and a sensor
interface, on a “10 euro” budget. We have experimented with turning
commercially available USB game controllers into generic sensor inter-
faces, and making sensors from cheap conductive materials such as la-
tex, ink, porous materials, and video tape. Our prototype controller, the
CheapStick, is comparable to interfaces built with commercially available
sensors and interfaces, but at a fraction of the price.

1 Introduction

A number of different sensor interfaces and sensor technologies have emerged
for musical and artistic purposes in recent years, and have made it possible for
“everyone” to build their own custom-made music controllers. However, most
of these systems are far too expensive to allow for example all students in an
undergraduate music technology class to build their own controllers, or build
many self-contained instruments for a performance. This has lead to our interest
in exploring various ways of creating sensor interfaces and sensors that would
allow for making a complete music controller on a “10 euro” budget. Another
guiding idea has been that “everyone”, also people with a limited technical
background, could manage to build their own controller.

The paper starts by discussing our experience with turning game controllers
into generic sensor interfaces, then presents how we can make contact sensors
from conductive materials, and finally shows a prototype of a music controller
and how it can be used for musical applications.

2 Game Controllers as Sensor Interfaces

Commercially available sensor interfaces intended for musical and artistic pur-
poses generally use either MIDI or Open Sound Control (OSC) to communicate
with a computer (Table 1). Popular MIDI devices (e.g. iCubeX, MIDItron, Eo-
body) are generally cheaper, and have the advantage of being able to connect
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Table 1. Comparison of a number of popular sensor interfaces for musical and artistic
purposes (prices and specifications are taken from the manufacturer’s websites, and
have been generalized for the sake of comparison)

Product Manufacturer Price Inputs Speed Resolution Protocol

Pocket El. Doepfer ¤80 16 - 7 bit MIDI
MIDItron Eroktronix ¤125 8 - 7/10 bit MIDI
Teleo Making Things ¤130 4 - 10 bit USB
miniDig Infusionsystems ¤330 8 100 Hz 7/14 bit MIDI
Teabox Electrotap ¤350 8 4000 Hz 12 bit SPDIF
GluiOn Glui ¤445 16 1000 Hz 16 bit OSC
Eobody IRCAM ¤480 16 - 10 bit MIDI
Wi-miniDig Infusionsystems ¤500 8 100 Hz 7/14 bit MIDI
Digitizer Infusionsystems ¤580 32 24-244 Hz 7/14 bit MIDI
Wise Box IRCAM ¤950 16 200 Hz 16 bit OSC
Toaster La Kitchen ¤1200 16 200 Hz 16 bit OSC
Kroonde La Kitchen ¤1200 16 200 Hz 10 bit OSC

directly to any MIDI-compatible equipment. In practice, however, most people
tend to connect the interfaces to a computer. Thus, a separate MIDI interface
is also required, boosting both the total prize and potential problems of such
a setup.

The shortcomings of MIDI in terms of resolution1 and speed, make OSC based
sensor interfaces (e.g. Ethersense, Toaster, GluiOn) more attractive. Such devices
typically allow for higher resolution and sampling rates, and long-distance com-
munication over standard high-speed ethernet connections [1]. There are even
devices that use digital audio for communication (e.g. Teabox [2]), but this re-
quires the computer to be equipped with a digital audio input.

The problem is that none of these devices come close to our “10 euro” budget.
Most of them are also too bulky for our needs, since we are interested in inte-
grating as much as possible on the music controller itself. A solution, of course,
might be to use microcontrollers such as the Atmel, Pic or Basic Stamp, as sug-
gested by [3, 4], but the background in programming and electronics needed to
succeed with this is not something we expect from the regular music student
taking a music technology class.

Using consumer electronic devices such as game controllers then seems like a
better option. They are easily available for a low prize at any electronics store,
and work out of the box using the generic Human Interface Device (HID) driver
available with most operating systems [5], and supported in programs such as
Max/MSP, PD and Matlab. This means that no extra interfaces are needed and
no software has to be installed to make them work. Since they also draw all their
power from the USB-port, no external power supply is needed either.

1 Usually 7 bit (0-127), although some products allow for sending dual messages giving
a 14 bit range.
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Of the many different types of game controllers available, we find gamepads
the most interesting. They are generally cheaper and smaller than other types of
controllers (such as joysticks, flightsticks or wheels) and often have the largest
number of inputs. Taking a typical gamepad apart reveals a motherboard with
4 analog and 12 digital inputs. These inputs comply to the standard 0-5 volt
sensor input range, and thus most sensors can be connected to the input points
on the main board directly. In most cases the motherboards are clearly marked,
so it is easy to see where the different connectors are, but in some cases it might
be necessary to check with a multimeter which connectors carry signal, +5 volt
and ground. For simplicity and for making a generic sensor interface, we usually
de-solder the small joysticks, and solder on cables with 3-pin connectors. This
makes it is easy to test different types of sensors with the interface.

The result is a generic sensor interface with 4 analog and 12 digital inputs,
8-bit resolution and 100Hz sampling rate. Using a “rumblepad” will even give
a couple of analog outputs and small motors, and a wireless gamepad can be
turned into a wireless controller. For large projects with a need for lots of inputs,
it is possible to connect several controllers through USB-hubs.

3 Sensors

For our musical applications, we are mostly interested in contact sensors that
allow for the same type of sensitivity and tactile feel as acoustic instruments. A
problem with many commercially available products, such as bend, pressure and
position sensors, is that they ship only in standard sizes and defined materials
[6]. This constrains the possibilities of the controller to the shape and size of the
available sensors, and draws the focus away from the musical applications.

Another problem with commercial sensors is the lack of tactile feel and re-
sponse, either because they are too thin and small, or they are too big and have
too low resolution to be interesting for musical purposes. These problems can
be overcome by adding extra material around the sensors, but this also reduces
the sensor’s response since the padding effectively filters the gestural energy.

This is not to forget that the prize of only one commercial sensor is often many
times our “10 euro” budget, and in most cases it is necessary to have a number
of different types of sensors on a controller. But rather than looking at adding
lots of sensors to increase the response of a controller, a solution might be to use
the sensing material itself as a transducer. For example, for a “shoe controller”
the sole of the shoe could be the sensor itself, rather than adding various sensors
to a regular sole such as in [7]. Ideally, conductive materials could be bought for
example in rolls and then be adapted to the desired thickness and sensitivity.
This would also make it possible to adjust the sensitivity of the sensor to the
envisioned usage, for example high resolution for a hand controller and lower
resolution for a foot controller. Thus, any form and dimension could be realized
with the same technology.

Such conductive materials already exist, for example artificial piezoelectric
polymers (PolyVinyliDene Fluorid, PVDF) tested in several musical interfaces
such as the Magic Carpet [8], or the electret, a porous conductive polymer film
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used for pick-ups in some acoustic instruments. They are, however, quite expen-
sive and since they are mass-produced they are only available in certain standard
sizes from the manufacturers. Other surface conductive materials, for example
some types of video tape, can be used directly for making sensors [9, 10]. An-
other low cost alternative is to make new materials mixed of conductive parts
and some non-conductive or low-conductive and highly visco-elastic material,
usually some polymer, such as the plubber, a pressure sensitive silicon/carbon
composite used in the z-tile [11].

We have succeeded in making various types of position, pressure and bend
sensors from components generally available in hobby or artwork stores, includ-
ing conductive ink, adhesive, rubber, tape, elastics and porous materials. Since
such materials can be bought in many different sizes, it makes it easy to cus-
tomize the sensing surface to the interface we are interested in building. As can
be expected, the conductive qualities of these materials varies quite a lot, so
further research is needed to test different types of materials and improve the
consistency and reliability of the response. Also, since we are working with mate-
rials where the range and conductivity is unknown, more work will also need to
be put into improving the electronic circuits for optimizing the signals to match
the 0-5 volt range used in the sensor interfaces.

Fig. 1. Various sensors made from conductive materials

4 A Prototype Musical Controller

To test how our interfaces and sensors work in a musical context, we built the
CheapStick, a simple prototype controller with three pressure sensors made from
a porous material and a position sensor made from video tape (Figure 2, 3). With
the sensor interface mounted on the board, this makes a self-contained music
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Fig. 2. The CheapStick was built with pressure sensors made from a porous material
and a position sensor made by video tape

Fig. 3. The CheapStick can be played using the right hand to control position, and the
left to control the pressure sensors

controller very close to our “10 euro” budget, and with a USB-plug that can
easily be connected to a computer and used with various music applications.

HID-compliant devices can be accessed directly with the HI object in
Max/MSP or the HID object in PD. To help in making an easy-to-use setup
for musical applications, we have made the MultiControl2 program (Figure 4).
This program is somewhat similar to the MIDI-based Junxion [12], but adds a
number of useful features. The program can access any HID-compliant controller
connected to the computer and will automatically detect the active channels from
the device. The incoming values are automatically scaled to a usable range of
floating point numbers between 0 and 1, and these values can also be smoothed
which might be useful if the sensors send a noisy signal. The program can out-
put either Open Sound Control (OSC) messages internally or on the network, or
output MIDI so that it can be used with any MIDI-compatible equipment. This
program makes it easy to experiment with different mappings, and test out the
musical possibilities of the controller.

2 Available from http://musicalgestures.uio.no
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Fig. 4. Screenshot from the MultiControl software which allows for smoothing and
scaling of controller data, and output to OSC or MIDI

5 Conclusion and Future Work

We have presented our current work on turning consumer game controllers into
generic sensor interfaces, and making sensors from various conductive materials.
This “10 euro” controller performs quite similar to systems that cost many times
this price. Although initially motivated by cost and easiness rather than high
quality, speed and resolution, we are impressed by the tactile feel and response
of some of our low-cost sensors.
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Abstract. This paper presents ongoing research into the design and
creation of interfaces for computer music. This work concentrates on the
use of sensor as the primary means of interaction for computer music,
and examines the relationships between types of sensors and musical
functions. Experiments are described which aim to discover the particular
suitability of certain sensors for specific musical tasks. The effects of
additional visual feedback on the perceived suitability of these sensors is
also examined. Results are given, along with a discussion of their possible
implications for computer music interface design and pointers for further
work on this topic.

1 Introduction

The use of sensor technology is a fundamental part in the creation of interfaces for
computer music. However little investigation has taken place into the suitability
of particular sensors for specific tasks in these interfaces. While a number of
taxonomies and evaluations of sensors have taken place [1] [4], these have not
been concentrated on the use of such sensors in musical applications.

The experiments described in this paper have been designed to investigate a
number of important aspects in the use of sensor technologies in these interfaces.
This includes investigation of the usability of particular sensors for specific mu-
sical tasks and investigation of the effects of additional visual feedback on this
usability.

The work performed has involved three major phases. These are:

– a survey of existing interfaces for computer music and the use of sensors in
them

– classification of the sensors based on the parameters sensed
– experiments to determine the suitability of sensor classes for musical tasks

This document will discuss each of the phases of the research, along with the
results achieved and the possibilites for future work evident from these results.
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2 Survey of Sensor Use in Interfaces for Computer Music

In order to allow the results of our experiments to be as useful as possible, it
was determined that the sensors examined should be representative of those
most commonly found in computer music interfaces. To facilitate this a survey
was made of a large number of computer music interfaces to determine which
sensors were the most common.

2.1 Scope of the Survey

The first step in the survey involved determining where to find the information
related to the instruments in order to be able to detemine which sensors were
used in them. It was decided to use the instruments which had been presented at
a major conference on the design of digital musical interfaces as the basis for the
survey. Therefor we examined the instruments presented at the New Interfaces
for Musical Expression (NIME) conferences from 2001 to 2004, which resulted
in a total of 123 instruments and interfaces being surveyed.

It should be noted that the survey only examined the sensors used, so that
complex devices such as joysticks and cameras were ignored. This reduced the
number of interfaces to 105, due to 18 interfaces which were controlled solely by
means of a complex device. A further 54 interfaces contained a combination of
complex devices and sensors.

The ten most used sensors based on this survey are shown in Table 1 (from
most often to least often used). It should be noted that this count is based on
the number of distinct instruments using the sensor (i.e. while 19 instruments
use accelerometers, each of these instruments may have used more than one
accelerometer as well as other sensors). There are also a further 12 sensors which
were present in 4 or less instruments and are not shown in the table.

Table 1. Most commonly used sensors

Sensor Number of Instruments

Accelerometer 19
Force Sensing Resistor 18
Infrared Sensor 9
Light Sensor 8
Touch Pad 8
Bend Sensor 6
Capacitive Sensor 6
Rotary Potentiometer 6
Gyroscope 5
Linear Potentiometer 5
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3 Categorisation of Sensors and Tasks

Previous work has attempted to show a mapping between sensors and classes
of musical task [5]. This work classified sensors by the form of input that they
sensed (linear position, rotary position, force etc.) and classified musical tasks by
the range and form of input they required (static, absolute dynamic and relative
dynamic). The experiments described here make use of these categorisations
and attempt to evaluate empirically whether any mapping from sensor type to
musical task holds.

Table 2 shows how the sensors used in this experiment were classified. The
sensors chosen are all among the ten most commonly used sensors as found by
our study and have been selected to allow for at least one sensor from each class.

Table 2. List of sensor devices used in the experiments and their associated categories

Sensor Sensor Category

Linear potentiometer (fader) Linear position
Rotary potentiometer Rotary position
Linear position sensor (ribbon controller) Linear position
Accelerometer force
Force sensing resistor force
Bend sensor rotary position

The task list consists of two simple tasks and one complex task, the complex
task being created by combining the two simple tasks. The two simple tasks
have been chosen to represent common musical tasks, while also conforming to
the classification of musical function as presented in [5]. It has been proposed
in [7] that the concept of a musical task is an inherent part of the evaluation
of controllers for computer music. The authors also presented a partial list of
musical tasks which might be used in the evaluation of controllers for computer
music. The tasks chosen for this work are based upon this list and have been
categorised based on the scheme presented in [5]. The tasks are also consistent
with those used in [6] to allow for a comparison between the results of these
experiments and those of that work.

Table 3 shows the chosen tasks and their classification.

Table 3. List of tasks and their associated categories

Task Task Category

Note selection Absolute dynamic
Note modulation Relative dynamic
Note selection & modulation Complex combined
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4 Test Setup

Two experiments have been designed, each of which involves performing the
selected tasks with each of the selected sensors. The experiments differ only in
the feedback provided to the user during the tasks. The experiments themselves
will be described in detail in later sections.

The setup is the same for each experiment. It consists of the user manipulat-
ing a synthesis system through the use of a sensor and a button. Pressing the
button causes a sound to be emitted from the system, the frequency of which is
controlled by the sensor. The sensor is controlled with the user’s primary hand,
the button with the secondary hand.

Synthesis is performed in Max/MSP and is a simple waveshaping synthesis
system based on Chebychev equations. The frequency of the synthesis is variable
in semitones.

There was a total of 11 participants in the test group. The participants were all
graduate students in Music Technology and their areas of specialisation ranged
from acoustics and physical modelling to interaction design to music information
retrieval.

Eight of the participants had extensive musical instrument training, while
the remainder either did not play, or had only played for a period of less than
two years and had since stopped. Five participants had experience of playing
electronic instruments whether software or hardware in form.

As already stated, each experiment consisted of three tasks. Each task was
performed with each sensor. When a task had been completed with all sensors
a short break was taken before beginning the next task. A task was considered
to be completed with a given sensor when the user was happy that they had
performed it as well as they could, or when the user decided they could not
perform the given task with the particular sensor.

Information from the experiments was gathered by a number of means. On
completing a given task with a sensor, the user was asked to rate the ease of use
of this sensor for the task, by setting the position of a slider object in Max/MSP.
This slider gave a percentage rating of the ease of use of the sensor, which was
recorded. This allows us to gather data indicating the subjective usability of the
sensors for the tasks.

The length of time taken before completion of the task was noted, along with
the success or failure of the task. This gives an indication of the learnability of
the sensor, as well as its suitability for the task.

A video recording containing the interaction with the system and the audio
from the system and user themselves was also made. This allowed for later anal-
ysis of factors such as ease of learning, accuracy and quality of sound produced
with each sensor.

Finally, the users were debriefed verbally after each task was complete and
asked to comment on any particular strengths and weaknesses of the sensors for
that task. This gave a subjective opinion of the sensors as well as offering ways
of possibly improving the interaction of a given sensor.
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5 Experiment 1 – No Additional Feedback

5.1 Description

The first experiment is the baseline experiment for determining the suitability
of the sensors for the tasks. It consists of the user manipulating the frequency of
synthesis with the sensors and causing a sound to be emitted with a button. No
additional feedback (haptic, tactile or visual) is given from the system except
for that intrinsically provided by the sensor itself.

5.2 Tasks

The first task is the note selection task. The user is asked to attempt to play
a short melody with each sensor. Choice of the melody is left to the user. The
sensor can be used to manipulate the pitch of the sound produced in intervals
of a semitone, with a range of one octave. The note currently selected by the
state of the sensor is emitted when the button is pressed. The users are asked
to restrict themselves to emitting short single notes. The task is considered
completed when the user feels they have played the melody to the best extent
allowed by the sensor.

The second task is a note modulation task. In this task the computer plays a
short melody, one note of which is emitted at every button press. Notes can be
sustained by holding the button. The user is asked to play the melody through,
sustaining every fourth note and adding a trill effect between this note and the
note above it using the sensor. Thus the sensor is used to modulate between the
current semitone and the next.

The third task is a combination of the first two. The users are again asked
to play a short melody, but as well as the short single notes used in the first
task, they are now allowed to sustain and modulate notes using the sensor. This
provides a more complex task than the previous two and allows us to examine
the effects of increased task complexity on the sensors suitability.

5.3 Results

For the first task, note selection, the users showed a very strong preference for
the linear position sensor. The linear and rotary potentiometers were next in
preference and received similar ratings.

For the note modulation task user preference was split between the linear po-
sition sensor and the force sensing resistor. Viewing of the recorded video from
the experiment indicated that preference was highly dependant on the technique
used to manipulate the sensors. All users giving preference to the force sensing re-
sistor attempted the modulation using the linear position sensor by sliding their
finger along the sensor. Those prefering the linear position sensor used two fingers
in a rocking motion, similar to playing a trill on a keyboard. It should be noted
that those who performed the sliding movement were creating a more vibrato-like
effect and that the preference of these participants is consistant with the results
of [6] who found that users prefer the force sensor for creating vibrato effects.
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Finally, for the complex task, user preferences seemed to depend on their
preferences for the first two tasks. Sensors which were preferred for part of the
task (i.e. for one of the simple tasks) were rated well for the whole task. The
linear position sensor and force sensing resistor were the prefered sensors.

Figure 1 shows the average normalised ratings for each sensor for each of the
tasks. These ratings were achieved by normalising each users rating relative to
the highest rating they gave and then finding the mean of these ratings across
users.

Fig. 1. Normalised average user ratings for each sensor for each task

6 Experiment 2 – Additional Visual Feedback

6.1 Description

Evidence exists that tactile and kinaesthetic feedback prove important to expert
musicians playing traditional instruments ([3]). However, it has been stated in
[5] that visual feedback is most useful to beginning musicians. Therefor, the sec-
ond experiment performed consisted of the same setup and tasks as the original
experiment, but with the addition of a visual feedback system. This visual feed-
back system involved the displaying of a line of white boxes on the screen. Each
of these boxes represented a semitone over the octave range of the sensor. The
semitone which was selected by the current value of the sensor was highlighted
by a yellow circle within the box representing that semitone. The boxes were
2.5 x 2.5 cm in size, and were displayed against a grey background.

6.2 Tasks

As stated previously, the tasks chosen for this experiment are the same as those
in the first experiment. Therefor, the participants perform a note selection task
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(playing a melody), a note modulation task (adding a trill to an automatic
melody) and a composite task (playing a melody with added trills). The differ-
ence between these experiments is solely due to the additional visual feedback.

6.3 Results

For the note selection task and the combined task, with the exception of the
FSR and the linear position sensor, all sensors showed a large increase in the
normalised rating given to them by each user. Each of these sensors achieved a
rating at least 25% higher than without feedback. The FSR improved by only
0.4% and the linear position sensor showed a decrease in rating of 4%. Comments
from users about the linear position sensor indicate that the difference in location
of the visual feedback system and the sensor itself causes confusion about which
one to pay attention to. It is possible that were the visual feedback system
integrated into the sensors, this confusion would not arise. Figure 2 shows the
user ratings for each sensor for this task, both with the additional feedback and
without.

Fig. 2. User ratings for each sensor both with and without visual additional feedback

Also for these two tasks, a major improvement was also found in the accuracy
of users once the visual feedback system was added to the experiment setup. An
improvement in accuracy of at least 8% was found in all sensors not belonging
to the linear position class of sensors. This is shown in Figure 3. When these
improvements are taken relative to the accuracy achieved without the additional
feedback, this shows a minimum relative improvement of 15% for these sensors,
as shown in Figure 4.

The results of the modulation task are not examined here as interviews with
the participants indicated that the majority of them were not using the visual
feedback for this task. They found that it offered no advantage to use it and so
did not.
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Fig. 3. User accuracy for the note selection task, both with and without additional
feedback

Fig. 4. Improvement in user accuracy for each sensor, relative to their initial accuracy

7 Overall Results

As can be seen from the results of experiment 1, users show a strong preference
for certain sensors for specific tasks in musical insterfaces. These preferences are
consistant across many users, with the only obvious variation in preference (some
users preferring the FSR to the linear position sensor for the note modulation
task) being explainable by the technique used in performing the task.

Also notable is the effect of the additional visual feedback in experiment 2.
User accuracy in the note selection task was greatly improved, with the majority
of users now capable of playing a melody with all sensors. This indicates that
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proper visual feedback in an instrument system can greatly increase the playa-
bility of the system. It is interesting to note that the positive effect of this visual
feedback (which was in the form of a linear representation of the notes) was only
present for sensors which are not linear position sensors themselves. This may be
due to the linear visual feedback which is inherent in the linear position sensors.

8 Conclusions

This paper presented the results of a number of experiments to determine the
suitability of sensors for specific tasks in digital musical instruments and the
effect of the addition of visual feedback on this suitability. The experiments
have shown that users do express a preference for certain types of sensor for
certain musical tasks and that these preferences are consistant across users. The
results for users producing a vibrato-style modulation in the modulation tasks
also proved consistant with those of previous work in this area [6].

Also shown was that additional visual feedback had an effect, not only on the
perceived suitability of the sensors for the tasks, but also on the accuracy of the
users when using the sensors. These results show that it should be possible to
derive guidelines for the use of sensors in digital musical instrument interfaces
and for the use of visual feedback to improve the interaction in these instruments.

It is hoped that these experiments will aid in the future design of computer
musical instruments, by providing an indication of the mappings suitable for a
particular sensor or for a particular parameter in an interface. By careful choice
of the sensors and mappings used in an instrument interface, instruments more
suited to expert performance can be created [2].
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Abstract. A simple to use pointer interface in 2D for producing music is 
presented as a means for real-time playing and sound generation. The music is 
produced by simple gestures that are repeated easily. The gestures include left-
to-right and right-to-left motion shapes for spectral envelope and temporal 
envelope of the sounds, with optional backwards motion for the addition of 
noise; downward motion for note onset and several other manipulation gestures. 
The initial position controls which parameter is being affected, the notes 
intensity is controlled by the downward gesture speed, and a sequence is 
finalized instantly with one upward gesture. Several synthesis methods are 
presented and the control mechanisms are mapped into the multiple musical 
gesture interface. This enables a number of performers to interact on the same 
interface, either by each playing the same musical instruments simultaneously, 
or by performing a number of potentially different instruments on the same 
interface. 

1   Introduction 

The common understanding of a musical instrument is that it controls the note pitch, 
length and dynamics to some degree, and furthermore has some possibilities of 
changing the timbre, most noticeable in the singing voice and less in other acoustic 
instruments. In modern music, even less control is often obtained, because of the use 
of pre-sampled sequences in the creation of the music.  

The actual control structure of digital instruments, which is most often MIDI-
based, does not easily permit more continuous control of an instruments timbre, by its 
inherent note-onset structure. Whereas this is indeed an appropriate control structure 
in many situations, the lack of sound timbre control can be disadvantageous in other 
situations. 

The continuous control of the timbre is often, in today’s computer-based music 
tools, replaced by short sequences that are concatenated to produce pleasing music, 
often with standard rhythmic structure. While this method shows the need for the easy 
production of music with standard orchestration and rhythm, it also pin-points the 
popularity of such sequences in today’s popular music. As for the continuous control 
of timbre versus note-onset control structure, the automatic approach will become 
more popular, and research into appropriate interaction modalities is necessary to 
permit the easy manipulation and creation of sounds and music sequences in real-
time. 
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Music synthesis has developed a great deal since the advents of the first FM 
synthesis methods [1]. While the gain in instrument sound fidelity is unquestioned, 
the use of pre-recorded samples often prevents an easy real-time transformation of the 
timbre. In contrast, more parametric models, for instance the additive synthesis 
method with appropriate high-level parameterization, such as the timbre model [3], 
can permit timbre changes easily. With the novel parameterized synthesis methods, 
there is a need for appropriate, flexible and intuitive interfaces. 

While the advent of flexible music programs widens the scope of musical sounds, 
it also limits the musical interaction in many situations. The performance of a musical 
sound is a vital step in music production by the addition of crucial timing and 
dynamics [8]. Even more so, the simultaneous performance of several instruments 
additionally contains complex synchronization issues that both heighten the music 
quality, but that also potentially alter the music in new directions. 

This paper presents three sound models in section 2, maps the sound model 
parameters to the multiple musical gesture in section 3 for several cases, gives 
information about potential implementations in section 4, and a conclusion is given in 
section 5.  

2   Sound Models 

As the multiple musical gesture are supposed to affect several important timbre 
attributes, an expressive and versatile sound model is necessary. The timbre model, a 
high-level additive model, is such a model. It has been shown to synthesize many 
acoustic instruments with good fidelity [3], but it also renders a large variety of 
irregular and noisy sounds [10]. 

In contrast, the interface is expected to have several, if not many sounds playing at 
the same time. This, in combination with the interface algorithms, put a heavy load on 
the host computer. For this reason, two relatively cheap, albeit powerful algorithms 
are used to produce the sounds that constitute the music; one is a traditional harmonic 
synthesis with perceptual relevance, the other an unvoiced synthesis method that 
creates anything in between Geiger (clicks) or cymbal (inharmonic tones) sounds. 

2.1   The Timbre Model 

A particular implementation of the additive synthesis, the Timbre Model [3], is 
chosen as the sound model first implemented in this work. In this model, a number of 
sinusoids (pure tones) with quasi-harmonic frequencies and time-varying amplitudes 
are made less pure by adding band-limited noise on the frequencies or amplitudes of 
the sinusoids. The amplitude and spectral envelope are not defined in this work, as 
they are controlled by the performer. In order to play the sound with an arbitrary 
duration, the sound is scaled using segment knowledge. Given an amplitude envelope, 
the segments are found using the derivatives of a smoothed envelope [4], or by 
identifying the first 90% of the maximum as the end of attack, and the last 70% of the 
maximum as the start of release. Only the decay/sustain part of the sound is scaled 
when controlling the synthesis. The sustain part is not affected, as it has similar start 
and end amplitudes, while the decay amplitude is decreased by a given dB value per 
second, according to the gestured decay curve.  
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The sound of the timbre model is created by summing a number of sinusoids. The 
amplitudes and frequencies are made by summing a filtered noise with the static 
values. The noise is a scaled sum of a common and an individual component for each 
partial. 

The control structure of the timbre model consists of the individual static 
amplitudes and frequencies, and the irregularity parameters. The irregularity 
parameters are also individual for each partial, and they consists of strength (std), 
bandwidth (BW), and correlation, which is how strong the noise part of the sound is, 
how rumbling versus hissing it is and how much the irregularity of a partial is similar 
to the irregularity of the fundamental, respectively. A further development of these 
irregularity parameters can be found in [10]. A special separation of the irregularity is 
attempted in this work. By splitting the irregularity into two frequency bands, one 
low-frequency (below approximately 10 Hz) and one high-frequency (up-to 
approximately the fundamental frequency of the note played), an intuitive control can 
be made without involving the bandwidth of the filter. This permits the independent 
control of either the rumbling or the hissing quality of the sound. 

2.2   Brightness Creation Function 

In case many notes are to be produced, a more cost-effective synthesis method is 
needed. The brightness creation function formula, known from many mathematic 
formula books, was first put into musical relevance by Moorer in 1976 [1]. Jensen [3] 
showed that this formula had an easy link to the spectral centroid, which in turn  
is closely linked to the perception of brightness. The brightness creation formula 
(BCF) is,  
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where a0 is the amplitude of the sound, 0 is the fundamental frequency, and B as a 
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Thus, by a simple formula, a sound is created that allows one to control the 
amplitude (linked to the perceptual loudness), fundamental frequency (pitch) and 
length of the sound. In addition, the principal timbre attribute, the spectral centroid 
(brightness) is also controlled. By putting an envelope [4] on the amplitude, other 
important timbre attributes, such as the attack time, decay rate, etc. are easily created. 
As with the timbre model, only the decay/sustain part of the sound is time-scaled 
when controlling the synthesis. The sustain values are not affected, while the decay 
amplitude is decreased by a given dB value pr second. Finally, by adding a band-
limited noise on the amplitude and fundamental frequency, several additional timbre 
attributes are controlled, having to do with irregularity, noise component, etc. Noise 
on the amplitude is called shimmer, and noise on the frequency, jitter. The synthesis 
method has much in common with the timbre model, although the different timbre 
attributes are only controllable for all harmonics together, not individually. 
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2.3   Atomic Noise 

The atomic noise [5] is a synthesis method for unvoiced sounds that can create a large 
variety of sounds with subtle variations. By adding a variable number of atoms with 
random center frequency and width, different noise categories are created, including 
Geiger (clicks) and cymbal (inharmonic tones). The formula for one atom is, 
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where a0 is the amplitude, 0 is the center frequency, t0 is the center time, and  is the 
standard deviation (width) of the atom. The atom is realized at time t0, if the random 
variable r is greater than the probability threshold p. The atomic noise is the sum of a 
number of atoms. All of the parameters are random variables with uniform or 
Gaussian distribution. Recent additions to this model are the loudness dependent 
inverse auditory filter, and a frequency distribution that renders approximately the 
same number of atoms in each critical band. These additions create a perceptual, 
instead of a physical white sound. 

The distribution parameter that is controlled is the range, the maximum value in 
the uniform case, or the standard deviation in the Gaussian case. The amplitude range 
is not changed, as this would change only the perceived loudness. It is possible to 
change the distribution of the frequency and time to obtain, for instance, a voiced 
sound, by making a periodic probability density function of the time or frequency 
random variable [5]. What are controlled are the probability (p), the width of the atom 
( ), the auditory system loudness dependent inverse filter and the frequency and time 
periodicity and period. By setting a low probability, very few atoms are realized, 
creating either a Geiger sound, if  is small, or a cymbal sound, if  is large. By 
increasing the probability, more dense sounds are created, resulting finally in a white 
noise, if the combined p and  values are large enough. 

3   Multiple Gestures Interface 

In the multiple musical gesture interface [6], which can use any pointing device, a 
pointer is entering a valid square from different directions of incidence, thereby 
controlling either sound or note parameters. It is possible to profoundly modify the 
sound in the same interface as the notes are played.  

The actual control is dependent on many things. First, of course, the actual sound 
model may or may not have the necessary parameter control. In [6], the sound model, 
the timbre model [3], has individual control of amplitude, frequency and irregularity 
on each partial. The note model was a standard note-onset model, with dynamics and 
vibrato control. The actual pointer device also influences the multiple musical gesture 
interface. For instance, the presence or not of an on/off switch could alter the 
interaction significantly. Such a switch is assumed to exist here. Another important 
aspect to be considered is the performer skills. If a novice is to use the interface, 
continuous pitch may be translated into the discrete notes of the major scale, the 
continuous temporal envelope into a simple attack/decay/release envelope, etc. The 
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increased complexity of the interface is thus coupled to an estimation of the skill of 
the performer. 

3.1   Timbre Model and BCF 

While the multiple musical gesture interface is indeed dependent on both the sound 
model, the pointing device and the skill of the performer, care has been taken to 
insure that it has as many commonalities as possible. This includes many of the 
sound, note and timbre gestures. The sound and note gestures are illustrated in fig. 1. 
If the pointer enters the valid square from the left or right, the sound is gestured, and 
if it enters from the top, the note is gestured. If the pointer enters from below, the end-
of-sequence gesture is made. 

End of Sequence 

Spectral Envelope 
Incidence direction 

Temporal Envelope 
Incidence direction 

Note Onset 
Incidence 
direction High Note Low Note 

 

Fig. 1. The multiple musical gesture interface. A pointer is controlling either the identity of the 
sound, or the note sequence. 

The brightness control function [3] (BCF) is rather similar to the timbre model, 
although significantly easier and cheaper to synthesize. The sound control, as 
illustrated in fig. 1 (left incidence direction), is valid for both synthesis methods. The 
irregularity is added by reversing the pointer direction during the sound gesture, as 
shown in fig. 2. 

In the case of the timbre model and a skilled performer, the backward motion place 
affects the time or frequency location of the added irregularity, dependent on if the 
temporal or spectral envelope was gestured. Contrary to the timbre model control, the 
BCF irregularity control has no frequency location control. Instead, both shimmer and 
jitter are added on the time location corresponding to the distance in the direction of 
the x axis of the reversed gesture. 

The note control is the same for the BCF as for the timbre model control [6]. A 
new note is initiated when the pointer is entering the valid square from the top. The 
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Fig. 2. Irregularity is added by reversing the sound gesture direction. Shimmer is affected when 
gesturing the temporal envelope, and jitter when gesturing the spectral envelope. 
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Fig. 3. The timbre gestures for the BCF 

note is sounded as long as the pointer is inside the valid square. A vibrato is added, 
depending on the undulations in the x-axis direction during the downward motion. 

The timbre gestures are made when the pointer enters and leaves inside the valid 
square, as illustrated in fig. 3. 

The pointer has to enter inside the valid square, by ‘switching it on’. When this is 
done, it alters the parameters of the timbre graphs it enters. When the pointer exits, 
the value at the extinction point is retained. As an example, fig. 3 shows a timbre 
gesture in which the brightness is decreased, and made more dependent on the 
dynamics of the note played. The ‘timbre’ graphs are Spectra, in which the brightness 
value and dynamic sensitivity [9] are controlled, the irregularity and noise graphs, in 
which the low-frequency (rumbling) and high-frequency (hissing) irregularities are 
controlled, and the voice graph, in which a formant filter F1 and F2 frequencies are 
controlled. 

3.2   Atomic Synthesis 

Atomic noise [5] is in no way similar to a note-oriented synthesis. It has no pitch, no 
temporal envelope, and no spectral envelope. A recent extension, the perceptual 
atomic noise, changes the uniform frequency distribution and uniform amplitude 
values into a frequency distribution that is supposed to give approximately the same 
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number of atoms for each critical band and amplitudes that give the same perceptual 
level for all frequencies, approximately inversing the filtering made by the auditory 
system, for a given theoretic listening level. Since this filtering is dependent on the 
intensity, the perceptual atomic noise dynamic is easily controlled. 

Atom probability 

End of Sequence 

ManyFew 

Atom Width 
Incidence direction 

Note Onset 
Incidence 

Atom Probability 
Incidence direction 

 

Fig. 4. The atomic noise model has the same note/sound control as the BCF. Pitch is replaced 
with atom probability, however. 

The sound control of the atomic noise model has the atom width control to the left, 
and the atom probability to the right. While the note onset position decides the atom 
probability, this value is changed over time with the curve obtained form the atom 
probability incidence direction. The note dynamics controls the auditory inverse filter, 
which gives an effect similar to many musical instruments, with an increase in 
brightness for higher intensities. The timbre gestures affect a different set of 
parameters than the BCF parameters, as illustrated in fig. 5. 

The timbre graphs of the atomic noise affects the listening level value and dynamic 
dependency, the periodicity weight and period of the time and frequency respectively 
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Fig. 5. Atomic noise timbre gesture possibilities 
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and the repetition rate and acceleration rate, in case the noise is repeated (frozen 
noise). In fig. 5, the listening level is decreased, but made more dependent on the 
dynamic level of the played note, thus making a less bright sound that becomes 
relatively more bright with the dynamic level. 

4   Implementation 

The goal of this work is to create a simple, intuitive and cost-effective interface for 
control over the synthesis and note sequences in a collaborative environment. The 
collaborative is understood here primarily in a traditional way, where each performer 
adds one sound/music, and the collaboration takes place in the creation of the 
resulting music, but it is also possible to have, for instance, one performer controlling 
the note sequence simultaneously to another controlling the sound parameters. 

The multiple musical gesture interface has been shown to control different types of 
sound synthesis methods. The actual pointing device has yet to be defined, though. 
Ordinary computer pointing devices are not made to function independently and they 
also generally lack in freedom of extra-control movement, although they are efficient 
in navigation tasks [7]. One method to make a cheap interface that can control several 
synthesis methods at the same time is using a camera device. By pointing a laser 
pointer at and across the imagined valid square, and having a camera detecting this 
movement, a simple and cost-effective multiple musical gesture method is obtained. 
Although this approach does not give any force-feedback, it is believed that the 
combined auditory (music) and visual feedback remedies this. Finally, by using 
flashlights with different colors, several different synthesis methods or music 
sequences are controlled simultaneously, without additional cost. 

The actual camera detection algorithm and synthesis are implemented in max/msp 
and jitter1, using a standard usb camera. The unfortunate latency of common usb 
cameras is somehow ignorable by supposing that the actual valid square top border is 
situated higher than it is in reality. The multiple musical gestures is used in one 
interactive music piece to be performed at the CMMR conference in Pisa. 

5   Conclusions 

The multiple musical gestures interface contains the traditional note-onset metaphor, 
but permits additionally the in-detail shaping of the timbre of the musical sound, 
creation of musical sequences, and real-time control of many musically meaningful 
sound parameters. 

Several sound models are presented, the timbre model, the harmonic brightness 
creation function, and the atomic noise. These sound models are chosen for timbre 
space is represents, the relatively cost-effective synthesis, the varied sound spectra 
produced and the possibility of real-time control of important timbre attributes. Each 
sound model is integrated into the multiple musical gesture interface by appropriate 
mapping of the sound parameters to the direction of incidence of the valid square of 
the interface. This allows the performer to create a musical sound by sound gestures, 

                                                           
1 Max/msp and jitter are available from http://www.cycling74.com/ 
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to produce a musical note by a note gesture, to produce a sequence of notes by a 
musical gesture, or modify the sound in real-time by continuous timbre gestures. 

An example of a multiple musical gestures interface implementation is a color-
sensitive camera that tracks the movement of a laser pointer in real-time. This enables 
the performer(s) to produce several musical streams simultaneously in the same 
interface, or to manipulate several aspects of one stream concurrently. This complicity 
is believed to enable a convivial musical activity. 
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The physical-mathematical models of orchestral instruments represent an important 
theoretical and experimental support for the composer and for the application of new 
acoustic and performance criteria. Western music has linked its evolution to the 
transformation of instruments and performance techniques through the constant 
interaction between the expressive demands of the musical language (e.g. pitch range 
and control), acoustic requirements (e.g. sound irradiation level and type), sound 
emission techniques (e.g. ergonomics and excitation control). There is a constant 
interaction and reciprocal adaptation between the construction of the instrument and 
the composition and performance of music. For instance, consider how the tenth-
century Viella evolved into the family of Renaissance Violas and then into the family 
of Violins. In terms of composition this coincides with the transition from monodic 
forms that duplicate voice and syllabic rhythm to the formal autonomy of 
instrumental music, with the spread of the frequency range, to the grand forms and 
orchestral ensembles of Baroque music. Executive technique is integrated in this 
process, since the player not only fills the role of agent producing the acoustic 
rendering, but also of expert demonstrating the criteria of agility and ergonomics of 
the instrument and inventing solutions of adaptation and virtuosity.  

Considered in temporal terms, the transformations of musical language dating up to 
the last few decades, appear to us uncorrelated with the physical transformation of the 
orchestral instruments. The executive technique attempts to match the vibrational 
characteristics of the instrument with those of the language but, in many cases, results 
in  aberrations of the physical system (e.g. multiple sounds of the winds, 
unconventional stimulation of the strings and resonant bodies) which make  intensely 
complicated or aleatory the reproducibility of the acoustic phenomena and, as a 
consequence, also the notation and the prediction of the composer. 

The use of electronics in processing instrumental sound has led to profound 
transformations, above all in the compositional and auditory terminologies, which 
immediately provide an answer to the expressive requirements of the musical 
language, but has favoured a real transformation only in a few instruments; by 
“transformation” is intended the extension or the characterization, both acoustic and 
executive (e.g. electric guitar). In serious music, where the power of transformation 
rests on the linguistic and technical system, electronics and the traditional instrument 
have  for a long time been seeking  interaction, integration and the sharing of sound 
development without however succeeding in losing their mutual identities. In many 
compositions electronics are used in parallel, it dialogues, integrates, draws out the 
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instrument but does not change the instrument’s acoustic and technical characteristics. 
In these compositions the presence of a new sound structure can be detected, but the 
action and control of the instrumentalist remain partial and are not necessarily a 
recognizable modulating cause of the sound.  Above all when the musical passage 
utilizes processing of the instrument in real time - and in general when performing 
with live electronics - the main difficulty for the player is to render his technical and 
expressive style coherent with the resulting acoustic phenomena. The perceptive 
vicissitudes of the acoustic instrument and of electronics remain separate or 
uncorrelated; even when a rational reconstruction of the musical information is 
achieved during listening and the musical language supports the coherence of the 
information, we recognize the separation between the vibrational structure of the 
instrument, the process of electronic elaboration and the performance technique. 

A study of the physical behavior of the instruments, its translation into 
mathematical models and, subsequently, its simulation with numeric calculation 
systems, appears to be the most feasible course to take for achieving specific forms of 
integration and the transformation or invention of new instruments coherent with 
present-day musical exigencies. Research in this direction investigates the 
complexities of physical reality for the purpose of constructing analytic and synthetic 
methods suitable for representing the phenomena involved. Obviously the aim is not 
to imitate the orchestral instruments for facile virtual utilization (typical limiting 
commercial trend), but rather to enlarge the knowledge of the vibrational 
phenomenon, to verify the models and to obtain acoustic confirmation of the logical 
and numerical process. 

These were the premises on which the musical and scientific work was launched. 
This produced the composition Gran Cassa (Lupone, 1999), and subsequently led to 
the development of the instrument Feed-drum.

1   The Basic Instrument 

The symphonic bass drum, the lowest-toned percussion instrument, was only added to 
the orchestra in the eighteenth century and by the next century had assumed the form 
we know today. In particular, the drum - which originally was narrow and long (as it 
still is in military bands) - was increased in size to 80-90 cm diameter and to 35-50 
cm height of the shell with  two heads of natural vellum fastened at the sides by 
systems which also regulated the tension. The biggest version, suitable for the largest 
orchestras, is the imperial bass drum with two heads of 102 cm diameter. It was on 
this type of instrument, lent by the L’Aquila Conservatorio and used for the first 
performance of Gran Cassa, that the preliminary experiments were carried out for 
both the work of musical composition and the project of the Feed-drum (Fig. 1). 

The role of the bass drum - however essential and ever-present in the orchestra 
from Mozart onwards - is considered as secondary and limited to a few modes of 
sound emission: the drum roll (prolonged note), often finalizing crescendos and the 
reinforcement of the low tones of the orchestra in rhythmic sequences. Specific 
techniques were not studied, as in the case of the timpani, and typical strikers are the 
baton and the timpani sticks.  
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The idea of a musical work entirely based on this instrument originated from 
observation of the vibrational modes of the skin and from experiments made 
previously with the Planephones® and with the physical model of the string and the 
bow (Palumbi, Seno 1997). 

Although the skin allows the excitation of a considerable number of high-
frequency modes, their duration in time is not appreciable by the listener, apart from 
the timbric contribution to the attack phase of the sound. The possible variations of 
the mode of emission, adequate for a sufficient acoustic response of the resonator 
(shell), are limited and with scarce modulability. The basic frequency1 , obtained by 
the tension of the skins, upper and lower, each bound to the edges with 16 mechanical 
tie rods, is influenced by the non-homogeneous distribution of the tensioning forces 
which contributes to render complex the spectrum of the real modes. 

Fig. 1. Première of Gran Cassa, Alessandro Tomassetti plays an Imperial Bass Drum.  
Corpi del suono 1999 –  Istituto Gramma,  L’Aquila – Italy. 

2   Experimental Work 

Following a phase of listening and analysis of the sound characteristics of the 
instrument, adopting also unconventional modes of excitation such as rubbing and 
jetée of wire brushes, it was imperative for the composition of the musical work to 

1  We have preferred this term, here and subsequently, to the sometimes adopted 
“fundamental”, since the latter should be more correctly reserved for the pitch frequency of 
tuned instruments. 
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identify and classify a wide range of possible sounds with different degrees of 
contiguity.  

The experiments were made with the aim of achieving the following objectives: 

1. variation of the basic frequency through the application of nodal constraints to 
the skin, 

2. identification of timbres on the basis of type, mode and point of excitation, 
3. sound modulation through glissandos, vibratos, portamento and rhythmic micro-

articulation, 
4. continuous and/or step variations of the dynamics, on the basis of the type of 

damping applied to the skin. 

The characteristics of the traditional bass drum obviously do not permit the 
achievement of a range of acoustic results relevant to the proposed objectives. In 
order to explore the timbre richness of the attack phase and to isolate the vibrational 
modes, a system of electronic conditioning of the skin was created. Through the 
principle of feed-back, the signal produced by the excitation of the skin was returned 
to the skin itself in the form of acoustic pressure. The result was the infinite 
prolongation of the sound. The system controls the damping of the movement of the 
skin, and therefore the decay rate of the sound, and permits the isolation of high 
frequency modes by the combined action of the nodes present on the skin and of the 
amount of feed-back input energy. The stability of the signal obtained with this 
conditioning system made it possible to experiment and design on the skin surface a 
preliminary simplified map of the oscillatory modes based on the Bessel’s functions. 
The map was limited to 13 diameters and 8 nodal circles (Fig. 2, Fig. 3), the latter 
divided into even semicircles (to the left) and odd semicircles (to the right). 

Electronic conditioning of the instrument left the topology and primary acoustic 
features unaltered, but increased the scope of the vibrational criteria and control. This 
was used so that it was possible to distinguish the different pitches of various modes, 
to obtain the emission of long notes which could be modulated as those emitted by a 
stretched string and to adapt the acoustic energy independently of the emitted 
frequencies. 

In order to maintain agility of execution and an adequate reproducibility of the 
phenomena, the first classification of sounds and performance techniques was limited 
to the use of fingers, hands and arms (Fig. 4). During the composition of Gran Cassa,
experiments were also made with objects of different shapes and dimensions 
occupying wider or multiple nodal sections;  this enabled us to increase further the 
sound possibilities, but the complexity of the vibrational phenomena involved an 
analysis also of the mechanical parts of the instrument in order to comprehend and 
reduce the dispersions as well as the non-linear contribution introduced by the 
vibrations of the structural materials and their combinations. 

Given these complications, it was decided to plan and realize a new instrument, the 
Feed-drum (Fig. 5), for the purpose of not only extending the acoustic possibilities, 
but also of permitting the ergonomic use of new executive techniques. In particular, 
the vibrational attitude was transformed by eliminating the lower skin, a decision  
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Fig. 2. Map of the first 13 nodal diameters 

Fig. 3. Feed-drum,  first map with 13 diameters and 8 nodal circles 

which simplified the tuning of the instrument’s basic frequency (30 Hz) and reduced 
the excitation rise time in the upper modes. A synthetic membrane was applied with 
isotropic characteristics and high flexibility on which the previously described map 
was drawn, with colors that made the areas of performance more visible. The shell 
and the tensioning hoop were realized in steel and aluminium; in particular, the 
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Fig. 4. Feed-drum, one of the performance techniques for the excitation of high frequency 
modes 

Fig. 5. Feed-drum 

tensioning hoop was made stiffer while the height was reduced and the adhesion 
surface increased. The suspension system was realized in such a way as to separate 
the Feed-drum completely from the supporting structure on the ground; all the 
mechanical parts, which were in contact with one another, were separated by an 
intermediate layer of antivibrational material. 
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Fig. 6. Feed-back – 3 Feed-drums (2002), excerpt from the score 

Despite the fact that there were still many aspects to be studied, it was possible to 
verify on the Feed-drum the reproducibility of the classified sounds and of the 
modulations, the adroitness of the excitation and control modes, the extension in 
frequency and the pitch characteristics. This facilitated drafting the performance score 
of the composition Gran Cassa and subsequently of the composition Feedback (for 3 
Feed-drums) (Fig. 6) where there were, in addition to the usual indications of 
rhythmic practice, the forms and points of excitation of the membrane, the quantity of 
feedback input energy, the frequency and duration of the sounds, the point intensity, 
the types of modulation (vibratos, glissandos, portamenti), the range and velocity of 
the modulating action. 

3   Theory of Operation – A Draft 

The behaviour of the Feed-drum is extremely complex and many of its aspects still 
have to be clarified. We will attempt to illustrate here the known elements, those 
conjectural and those remaining to be defined. 
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The oscillation modes of a circular non-rigid membrane, pegged down and 
stretched along its rim, are known from literature. In a conservative model (that  
is, without dissipations and acoustic irradiations and therefore “in vacuum”),  
the oscillation modes of a membrane of radius a have the form in cylindrical 
coordinates 

( ) ( ) ( ) ( )tR=t,,z ⋅⋅⋅ cos (1)

where: ( ) ( )km,Jn=R  and ( ) ( )0cos +mA= ⋅⋅  and where ( )xm,Jn

are Bessel functions of the first kind and of an order m . 0  is an arbitrary phase 

dependent on the initial conditions (there cannot be any privileged directions, since 
the problem applies to a circular symmetry). 

Owing to the constraint on the rim, ( ) ( ) 0=akm,Jn=aR ⋅ , where a  is the 

radius of the membrane; this allows calculating  k (wave number) which is  discrete 

and dependent on two indices ( )nm, : aR=k nm,nm, , where nm,R  is the nth root of 

the Bessel function of  order m, ( )xm,Jn .

Hence (1) becomes ( ) ( ) ( )0
, cos nm,nm,nmnm, +mkm,JnA=t,,z ⋅⋅⋅ .

Determination of the wave number is therefore possible by determining the roots of 
the Bessel function of the first kind. Once the roots and wave numbers are 
determined, the angular frequencies peculiar to the modes are given by: 

ck= nm,nm, ⋅  where c is the velocity propagation of transverse waves in the 

membrane, T=c /  where T  is the stretching force of the rim and  is the 

surface density of the membrane. However, c  can easily be estimated on the basis of 

0 50 100
0.5

0

0.5

Fig. 7. x)Jn(1,

0 50 100
1

0

1

Fig. 8. x),Jn(15



 Gran Cassa and the Adaptive Instrument Feed-Drum 157 

the frequency 1  of mode ( )0,1 , the lowest of all (basic frequency), taking into 

account that 2.4050,1 =R :

a
R

=c ⋅
⋅⋅

0,1

12

For the Feed-drum, m.=a 0.51  and Hz= 301 , and therefore secm=c ⋅40 .

Irrespective of the order of the Bessel functions, the root base tends to  for 
∞→m [2]; in addition, Bessel functions of different order do not have coincident 

roots (an important consideration for the purpose of the Feed-drum).
The exact calculation of the roots can only be realized numerically, a task which is 

not particularly difficult given the oscillatory character (even if not periodical) of 
Bessel functions. In fact, the roots of these functions are each comprised between a 
maximum and a minimum or vice versa. 

Calculations of the frequencies for the modes up to 5 octaves above the “basic 
frequency” (960 Hz for the Feed-drum) gives the following distributions of 
frequencies and modal density: 

0 12 24 36 48 60

Fig. 9. Modal frequencies in semitones with respect to the basic frequency 
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Fig. 10. Modal densities: the number of modes per semitone in the ordinate; in the abscissa the 
modal frequencies in semitones with respect to the basic frequency 

The index m is responsible for the creation of nodal diameters, the index n for that 
of nodal circles. In general, the pattern of the modes is simply correlated to the 
indices, as can be seen from the diagrams given below. 
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(0,1) Hz= 30 (basic frequency) 

(0.2) Hz= 68.9

Fig. 11. Modal maps 

4   Conditioning System and Implementation 

Excitation of the membrane is via a loudspeaker (Ø = 45 cm.) and a 11 cm-long wave 
guide (designed to convey maximum acoustic pressure between the center and 1/3 of 
the radius); that is, fairly short as far as the form factor is concerned. It proved  
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(1,1) Hz= 47.8

(1,2) Hz= 87.5

Fig. 11. (Continued)

fairly easy to obtain, in addition to the 30 Hz basic frequency, the 68.9 Hz frequency 
corresponding to the mode (0,2). It was  on the contrary impossible to obtain the 
frequency of 47.8 Hz corresponding to the mode (1,1). At these frequencies, the 
behavior of the air excited by the loudspeaker can presumably be schematized with a 
piston motion, which exercises an almost uniform pressure on the membrane. A 
uniform excitation is poorly compatible with the modal form (1,1).  
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(5,8) Hz= 396.8

(12,8) Hz= 517

Fig. 11. (Continued)

The loudspeaker was driven by an electric power signal, generated by a feed-back 
system that sampled the signal issued by a piezoceramic sensor placed on the rim and 
detecting deflection of the membrane. In this way a “multimodal” oscillator was 
obtained generating a feed-back on a resonant element, the membrane. The loop gain 
was controllable by a pedal. 
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5   Intonation of the Upper Modes 

Intonation is through the combined action of the negative feed-back gain and of the 
pressure on one or two points of a nodal line. The effect of the pressure can be 
schematized in a first approximation as dual: on one hand the introduction of a 
constraint on the pressure points, on the other a shift of the “work point” of the 
membrane around a slightly higher tension, and therefore an increase of the transverse 
wave velocity c . Consequently, all the frequencies move upwards. It is a matter of a 
shift mechanism, a “pitch-shift”, in the sense that the frequencies of the modes are all 
multiplied by a common factor, therefore leaving unchanged their relationships. In 
point of fact this effect has been encountered in practice and is utilized for obtaining 
the vibrato. The term “pitch-shift” is however improper in this case, since the 
spectrum of the partial tones of the membrane is not harmonic and as a result a pitch 
is  not definable2.

The apposition of constraint points (z = 0) has the effect, as a rule, of inhibiting 
every mode which has no set of nodal lines passing through all the aforesaid points, 

not even with an opportune choice of 0 .

For example, pressing the center of the membrane makes all the modes with m = 0 
becoming impracticable, since this point is invariably an antinode for these modes. 
Pressure on any other point of the membrane (speaking theoretically) makes all the 

modes with 1≥m  practicable, since it will always be possible to have a nodal 
diameter passing through that point. In practice, since the constraint is not perfect, 
preference will be given to the mode which possesses both a nodal diameter and a 
nodal circle passing through that point. The consequence of the fact that the functions 
of Bessel have no coincident roots is that the modes of different m order cannot have 
coincident nodal circles. Even modes with the same m and different n obviously 
cannot have coincident nodal circles. Two different modes can, on the other hand, 
have coincident nodal diameters if the ratio of their indices m is an integer number. A 
single pressure point different from the centre identifies therefore a mode only having 
a diameter and a circle passing through that point. The points which “discriminate” 
better the frequency modes are, however, those near the centre, because the nodal 
circles become densely-packed towards the perimeter and a single point therefore 
tends to have many of them very near to it. Consequently, it is the first nodal circle, 
the innermost one, which best discriminates the modes, as is also shown by a variance 
analysis. 

In theory, pressure on any two points of the membrane could create constraints 
incompatible with any mode.  

However, all these considerations are better limited to modes of relatively low 
order. In fact it can be presumed that the approximation of the non-rigid membrane 
results less valid with the increase of the mode order, since the node base tends to 
become comparable with the thickness of the membrane itself.  

2 It is known that the timpani (kettledrums) are endowed with pitch, but this is obtained thanks 
to the kettle and to the interaction with a great mass of air. See [1] for a more in-depth 
discussion. 
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There are also other considerations. The classic equation of the membrane 
generally used for obtaining the modes (see 3.7, p. 69, of [1]) is, as already mentioned 
in this text, entirely conservative and does not take into account either dissipation due 
to internal friction or irradiation. The latter both being mechanisms that dampen the 
partials, causing their decay in the absence of an exciting force. 

A symbolical solution of the equation corresponding to the vibro-acoustic 
movement described is definitely impossible, even if greatly simplifying hypotheses 
are adopted.  It is certainly possible to solve it with numerical methods (such as FEM, 
BEM, etc.) but even in this case, if acoustic-elastic coupling and internal dissipations 
of the membrane are to be taken into account, the problem still remains extremely 
delicate and the results should be subjected to thorough experimental verification. 

However, even in the absence of a solution, it is possible to note that decay of the 
partials is in any case connected with the merit factor (Q) of their resonance and 
provokes a widening of the spectral line, always more marked the more the relative 
mode is damped. The internal frictions are proportional to the velocity of variation of 
the local curvature, which increases with the frequency. It can therefore be presumed 
that, similarly to stretched strings, damping of the modes increases with their 
frequency. Consequently, in the upper spectral areas, where the modes are close 
together and massed (see Figs. 9 & 10), the transfer  function  of the membrane is 
more continuous than discrete, with moderate peaks on the modal frequencies. In 
these areas the modes which can be excited are less precisely definable and depend on 
the loop gain and on the frequency characteristics of the negative feedback electronic 
circuit. Conversely, the passage from one mode to another of adjacent frequency has 
little influence on the resultant frequency. 

Construction of a future improved map for excitation of modes must therefore 
foresee a judicious choice of the pairs of points which offer the most significant 
discrimination between modes. 

In addition, the modal frequencies should be verified experimentally, since it can 
be presumed that the frequencies of some modes deviate from their nominal values 
owing to the presence of the actuator with relative wave guide which has a beam 
width equal to 1/3 of the membrane diameter. The measurement of these deviations 
cannot be determined reliably with theoretical considerations, since the overall model 
is too complex and can only be solved (as already shown) with numerical methods. 

6   Conclusions 

The trials carried out to date with composers and percussionists, both classical and 
jazz, were received with an enthusiasm which stimulated suggestions for extending 
the control criteria, the use of special strikers of various forms and dimensions,  
and the application of independent hand techniques. No need was found for 
substantial structural modifications to the Feed-drum. Subsequent developments will 
principally concern ergonomic aspects, with the compilation of more precise nodal 
maps, probably of different conception, and of simpler and immediate use. In 
addition, improvements are quite conceivable in the electronic conditioning system 
and in its operation for the purpose of improving controllability of the emission of 
high overtones. These revisions of the project will be preceded by a series of 
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measurements with the object of defining more thoroughly the behavior of the Feed-
drum, both with the loop open or closed, through assessment of the transfer functions 
and exact measurement of at least one significant subset of modal frequencies and 
their comparison with theoretical predictions. 
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Abstract. This paper introduces a way to generate or modify a melody
using the editable noise function. The band-limited random numbers
generated by the noise function are converted to the various property
values of notes such as pitch and duration. Using this technique, we
can modify an existing melody to produce new, similar melodies. The
noise values can be edited, if necessary, while preserving the statis-
tical characteristics of the noise function. By using this noise editing
method, the noise function can generate a melody that satisfies given
constraints.

1 Introduction

Composing music with mathematical concepts or formal processes has been stud-
ied since the early twentieth century. Many composers have produced works in
this way. The stochastic music introduced by Xenakis [1, 2] and the use of pure
randomness in composing and performing music by John Cage [3, 4] are typical
examples of it.

In this paper, we consider Perlin noise [5, 6] as another tool that gives acci-
dental elements to music. Perlin noise, which has been used in many applications
in computer graphics [6], is different from white noise (plain random numbers).
It is a function that satisfies the conditions for the ideal noise function, which
is bounded, band-limited, non-periodic, stationary, and isotropic [6]. Because
of its properties, the Perlin noise function is also proper for giving controlled
randomness to music.

Music can be parameterized with many property values such as pitch, du-
ration, etc. This paper explains how the noise function generates or modifies
melodies by applying noise values to the parameters of the melodies.

Although various probabilistic and algorithmic composition methods, such
Markov chain and cellular automata [7, 8, 9] have been proposed, it is hard to
implement intuitive composing and modifying processes that include randomness
but are controllable and predictable. With the editing power of the noise func-
tion, we can give some user-defined constraints to the generated music, which
permits users to control the composition process. For example, when we modify
an existing melody, constraints can be given to prevent some notes from being
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changed while other notes are changed by noise values. The noise editing method
preserves the statistical characteristics of the noise function, which keeps the fair
randomness of the output while satisfying the constraints defined by users.

2 Noise Function and Editing

Our method is based on Perlin’s gradient noise algorithm. The following outline
explains how the noise generation algorithm operates when a 1D coordinate x is
supplied as an input [5] (see Fig. 1(a) for an example of 1D noise).

Step 1: Generate M PRNs (pseudorandom numbers) in [−1, 1] and store them
in a table G[0 : M − 1] of size M . Prepare another table P [0 : M − 1] that
holds a random permutation of the set of integers from 0 to M − 1.

Step 2: Obtain the integer interval [q0, q1], where q0 = �x	 mod M , and
q1 = (q0 + 1) mod M .

Step 3: Obtain two PRNs gj = G[P [qj ]], j = 0, 1.
Step 4: The noise value is computed by: Noise(x) = (1−s(d0))g0d0+s(d0)g1d1,

where dj = qj − x, j = 0, 1, and s(t) = 6t5 − 15t4 + 10t3 is an ease curve.
Note that −1 ≤ Noise(x) ≤ 1.

Taking sum of noise functions of various frequencies is more suitable in many
applications. This kind of fractal sum [10] has been used for modeling more
complex change in various frequencies. The general fractal sum of N noise func-
tions having different frequencies fj and amplitudes aj is defined as Fsum(x) =∑N

j=1 ajNoise (fjx), where aj ≥ aj+1 and fj ≤ fj+1, for j = 1, . . . , N − 1.
Fig. 1(b) shows an example of a fractal sum.

Yoon et al. [10] introduced the noise editing method to generate a PRN table
G satisfying a given user constraint: Noise(x∗) = H∗ which represents a user’s
demand to fix a noise value at a specific position x∗ to a desirable value H∗.
To preserve the statistical characteristics of the noise function, they suggested
an optimization-based method to minimize the Chi-square statistic of the edited
random number distributions. The Chi-square statistic is used to test whether
an unknown distribution is near a desirable distribution. In noise editing, the
Chi-square statistic is minimized to make the new distribution as similar as
possible to the uniform distribution (the pure random distribution). Thus, the
minimization problem is stated as follows:

Minimize D2 subject to Noise(x∗) = H∗

where D2 is a Chi-square statistic of the target distribution of the table G.
Fig. 1(c) shows an example of the noise editing result using this method. We can
see that the edited result preserves the statistical characteristics of the original
noise function, keeping the function shape similar to the original function. How-
ever, a number of modifications of the noise function without considering the
statistical characteristics make the resulting function totally different from the
original one (see Fig. 1(d)). Refer to [10] for more details about noise editing.
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(a) (b)

(c) (d)

Fig. 1. (a) 1D noise function, (b) fractal sum, (c) a result after several editing op-
erations of the original noise function in (a) (arrows denote the edited positions),
(d) a modified function without considering the statistical characteristics of the noise
function

3 Applying Noise to Melody

Noise values can be applied to various properties of melody notes such as pitch,
duration, note-on time, volume, tempo, etc.

Noise to Pitch. Pitch is one of the most important properties of a note, and
a relatively small change is recognized easily. In this work, a pitch is quantified
as a MIDI note number, and the noise function is applied to the pitch value to
modify the pitches of an existing melody or generate a pitch sequence for a new
melody.

Noise values–Noise(t)s–can be added to the pitch values–Pitch(t)s–of the notes
in an existing melody to generate a new melody, where t is the note-on time of
the note:

Pitch′(t) = Pitch(t) + s · Noise(t), (1)

where s is a scale factor. Or, we can use the ordered index n of each note as a
1D variable:

Pitch′(n) = Pitch(n) + s · Noise(n). (2)

The resulting melody gives listeners feelings similar to the original melody, but it
is not exactly the same as the original music. Fig. 2(b) shows a modified version
of an original melody in Fig. 2(a).

To make a note at t∗ have a specific pitch H∗, a constraint Pitch′(t∗) = H∗ is
set, and the noise function is edited to satisfy the constraint. Fig. 2(c) is another
version of a modified melody that has some constrained-pitch notes represented
with the arrows.

A completely new melody can be created by noise function. Given a skeleton
note or set of notes, the noise values are added to create a unique melody line:

Pitch′(t) = Pitchskeleton(t) + s · Noise(t) or
Pitch′(t) = Pitchskeleton(t) + s · Fsum(t). (3)

Fig. 3 shows an example of a melody line created by adding the fractal sum
values to the middle C notes.
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(a)

(b)

(c)

Fig. 2. Example of modifications of pitches in a melody: (a) original melody,
(b) modified melody, and (c) modification with noise editing technique: one note (F)
is constrained to be fixed as in the original melody, and the changes of two pitches (A
and D) are explicitly given as the constraints

Fig. 3. Example of generating melody: pitch sequence is generated by the fractal sum
of noises: Pitch(t) = 72 + 12Noise(t) + 6Noise(4t) + 3Noise(16t)

Noise to Timing Information. Note-on times and durations are perturbed
using noise function, too. For applying noise, duration and note-on time values
are quantified as tick values of the MIDI protocol. In this case, the resulting notes
may be out of their original measures and beats, which should be corrected in a
postprocessing stage. The total length of the melody may also be changed, but
because the noise function is unbiased and the mean value of the distribution is
almost 0, the change is usually very little.

Noise to Other Properties. Noise can be applied to many other properties
of a note such as dynamic, tempo, etc., to produce other effects as follows:

– Humanizing a melody by perturbing tempo and the dynamics of notes.
– Simulating crescendo and decrescendo by modifying the dynamics of notes

with a noise value per a measure or phrase.
– Simulating accelerando and ritardando by modifying the tempo of a melody

with a noise value per a measure or phrase.

4 Conclusion and Future Work

Noise function makes the modification of an existing melody easy and fast. The
modified melody shares the basic form of the original melody, but the details
are randomly different. The extreme changes that can be caused by white noise
are not found in the modification because of the ideal band-limited feature of
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the noise function. By noise editing, it is possible to control the composition or
modification process precisely to reflect a composer’s intent in the work.

There are some limitations to this approach. When pitches are generated
using the noise function, many atonal notes can occur, so that the original tonal
melody loses its tonality. If note-on values are changed, beat feel is decreased,
too. Applying noise is more suitable for atonal, non-beat, and avant-garde music
based on probability and accidents than classical music structured by tonality
and meters. That is, the noise method can be a tool for algorithmic composition
with randomness and some constraints from a composer that should be satisfied.
To produce more practical output, we need to postprocess the output to revise
the atonal notes to be tonal using other musical rules. For example, we can
slightly shift an atonal note up or down to the nearest tonal note.

We are trying to find more properties or elements of music to which the noise
value can be applied. For example, editing a fine tune or micro control of dy-
namics would generate natural effects such as vibrato, tremolo, and glissando.
Timbres and spatial parameters can also be considered as targets of the re-
search. Though we considered only 1D noise in this paper, the noise function
can be extended in any higher dimension. It will be interesting to construct more
complex musical structures in higher dimensions at which the noise function can
be applied.
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Communications, Korea, under the Information Technology Research Center
(ITRC) Support Program.
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Abstract. A unique real time system for correlating a vocal, musical perform-
ance to an electronic accompaniment is presented. The system has been  
implemented and tested extensively in performance in the author’s opera ‘La 
Quintrala’, and experience with its use in practice is presented. Furthermore, the 
system’s functionality is outlined, it is put into current research perspective,  
and its possibilities for further development and other usages is discussed. The 
system correlates voice analysis to an underlying chord structure, stored in 
computer memory. This chord structure defines the primary supportive pitches, 
and links the notated and electronic score together, addressing the needs of the 
singer for tonal ‘indicators’ at any given moment. A computer-generated note is 
initiated by a combination of the singer – by the onset of a note, or by some 
element in the continuous spectrum of the singing – and the computer through 
an accompaniment algorithm. The evolution of this relationship between singer 
and computer is predefined in the application according to the structural inten-
tions of the score, and is affected by the musical and expressive efforts of  
the singer. The combination of singer and computer influencing the execution 
of the accompaniment creates a dynamic, musical interplay between singer  
and computer, and is a very fertile musical area for a composer’s combined 
computer programming and score writing. 

1   Introduction 

Alignment of score and electronics in real time became a research area in 1984 when 
Barry Vercoe and Roger Dannenberg independently presented their seminal papers on 
this concept [33, 9, 10]. Much work has been done since then [7, 27], and recent new 
directions have been in combination with the much larger research area of affective 
computing, such as correlating intended emotion to musical analysis in real time emo-
tion tracking [13, 17]. 

In this paper a practical implementation of a new concept of correlating a per-
former to an accompanying electronic soundscape is presented, where timbre and 
expressivity of a performer is analyzed for subsequent use in sound synthesis. The 
system addressed practical needs in an artistic project. Proven and reliable algorithms 
and concepts of data handling from previous research was used upon due scrutiny, 
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such as spectral peak estimation [30, 20] and high-level pitch manipulation as sets of 
pitch-classes [11]. 

It was not the intention to build a new system from bottom up, and the scientific 
contribution of this paper reside in describing the first implementation of a general-
ized system for sonically unifying a performer in real time with an electronic sound-
scape intended to support and cue the performer, while at the same time enhancing the 
performer’s affective presence in the accompaniment. Specifically, 

− The paper is a contribution to music intelligence as a subset of machine intelli-
gence, and it is shown that a computer programme flexibly can adapt a soundscape 
to a performer in real time. 

− The affective content of a musical performance can be used to enhance sound syn-
thesis, without necessarily imprinting the spectral content of the performance 
analysis. 

− The system is based on a structure whereby a performance and its accompanying 
electronic soundscape can correlate with a predefined informal chordal structure, 
for instance notated in a performance score. 

The report of the artistic project that gave rise to the system is encompassed as one 
example of its use, and it is seen that the system can be used as a general tool when 
coordination of an underlying chordal structure in a musical score with a performer’s 
expressivity is called for. 

The artistic contributions are best appreciated by listening to excerpts of the  
performances at www.graugaard-music.dk/pages/la_quintrala_ex.html. Musical quality 
is of a highly subjective nature, but the system presented in this paper can be consid-
ered successful in regards with producing an accompaniment that has proved its stated 
purpose through many performances. 

2   Background 

In 2002 I was commissioned to compose an opera for five singers and interactive 
computer as a joint Danish, Swedish, and German commission through EU’s Culture 
2000 Foundation. It was to be scored for five singers and interactive, computer gener-
ated music, and it was to have a duration of two hours. The opera was later entitled 
‘La Quintrala’ after its main character [15], and it was premiered in Copenhagen on 
September 2nd 2005 at Den Anden Opera. A subsequent 28 performances took place 
in Sweden and Germany, with the last performance in Sweden on November 11th 
2005. 

While composing the vocal parts, it became clear to me that a versatile and flexible 
tool for unifying the electronic accompaniment with the vocal lines and for supporting 
tonal structure was needed. Specifically, it was necessary to tonally bind the singers to 
their accompaniment by cueing their pitches and providing supportive harmonic 
structures, to sonically unify their voices with the electronics, and to provide  
sufficient compositional freedom for serving the dramatic and musical needs of the 
composition. No existing software tools seemed to serve my purpose. 
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3   Functionality Requirements 

Opera is a musical drama where feelings of love, longing, hope, fear, and hatred are 
the essence of tragedy and drama. The electronic score for ‘La Quintrala’ would have 
to be able to project emotions into the soundscape as they would be exposed by the 
singers on stage. But the soundscape would also have to be able to relate the pitches 
of a singer to a chord succession to be synthesized, thereby providing the singers with 
tonal orientation. It is hard not to see these two requirements as opposites: the needs 
of a singer at a given point can be very different from the musical needs according to 
the composer. This, however, is not a characteristic of interactive music as such, yet 
attempting to meet these two requirements could turn the soundscape into an effec-
tive, compositional tool for shaping the formal development of the dramatic content. 

Questions of timing and event coincidence needed to be decided on at an early 
stage as it would influence the system design. My interactive music generate exactly 
timed events ‘on the fly’ by letting the performance analysis affect the chosen synthe-
sis method(s). I therefore didn’t need an accompaniment tool that would emphasize 
exact timing of events or action advance based on timing prediction, but I would need 
as low a latency as possible to get good time coincidence. This is fundamentally a 
compositional issue, to have the performer define the perceived rhythm periodicity. 
When the rhythm texture is sufficiently complex to be ambiguous in itself, yet suffi-
ciently simple to maintain the feeling of pulse, then the performer would ‘define’ the 
periodicity through the periodicity of the sung melismas. So, rather than classical 
score following, what I needed can be termed score correlation. 

4   Extracting Expressive Data 

The analysis of the voice could have been done with pitch estimation only, as this 
would have given information of the fundamental of the note sung. This representa-
tion would be directly applicable to the score notation of the voice and the underlying 
chord structure. But pitch estimation would not contain any expressive data, since this 
is embedded in the spectrum of the sound, and is discarded in the process of pitch 
estimation. A musical score is, on the same token, very limited with respect to the 
actual sound of the music notated, that is, the auditory information that arrives at the 
listener’s ears [32].  

The analysis had to provide an indication of the emotional triggers which the sing-
ers would embed in their vocal performance. Expressive information manifests itself 
in fluctuations of spectrum components at the onset of and during a note, in changes 
of dynamics, and in spectral and amplitude contours. Expressive information is read-
ily appreciated by expert and non-expert listeners alike, as the continuous, complex 
sound reaches their ears. But extracting such expressive content of an audio signal  
is not easily done. In fact, algorithms created for this purpose are in some respects  
still easily outperformed by even non-expert music listeners as described in [26]. 
Fortunately, ‘La Quintrala’ is a musical composition and non-utilitarian, and not  
an analysis tool. Handling the expressive data became an issue of finding the best 
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possible way to have the data influence and enhance the soundscape, based on my 
subjective, compositional judgment. 

Exactly what kind of expressive data I needed to access for would vary considera-
bly throughout the opera. The vague definition of ‘expressive data’ centers on flexible 
timing and flexible use of dynamics and articulation, and we often refer to this impor-
tant part of music performance as ‘phrasing’. A vast variety of imprecise musical 
terms is accounted for in score notation concerning loudness, pitch connection, articu-
lation, timbral shading, and time contraction and expansion etc., such as mezzo-forte, 
legato, tenuto, lontano, rallentando, and so forth. Since these notations are not  
as easily measurable as pitch and time, they are considered to be in the domain of 
performers, and a performance is judged by how well the performer expressively 
alters the given pitches and rhythms within the nature of the composition. Paradoxi-
cally, this expressive layer carries much of the appreciable content of the composi-
tion, because the composition defines and delimits its own ‘expressive space’, as  
an implicit consequence of the composer’s decisions of the more precise notations  
of pitch, time and rhythm. The ‘expressive layer’ is therefore a hidden but integral 
part of any musical composition, and even though it is defined at the moment of  
composing it only comes only into existence at the moment of performance. We 
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Fig. 1. Overall data fow (dashed arrows represent sound) 
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rely on performers to add this layer to their interpretation of a score, and it would be 
of major importance for me to extract and apply in some form this expressive data to 
the accompanying soundscape throughout the opera. 

5   The System 

The aim for the interactive relationship between the singers and the composition in 
‘La Quintrala’ had become twofold: comparing pitches for chordal verification and 
support, and projecting the singer’s interpretation of the expressive parameters onto 
the accompanying soundscape. 

The system is divided into three parts, I) analysis for spectral peaks and expression 
data, II) comparison with score data and input from high-level algorithms, and III) 
low-level algorithm affection of the sound synthesis algorithms (fig. 1). 

running input from analysis,
4 freq-amp pairs per window

‘snapshot’
call

note onset
detection

rhythm
algorithm

amplitude
threshold

propability
gate

propability
gate

amplitude
thresholdpropability gate

comparor (fig. 3)

frequency-amplitude pairs

trigger?

running update from analysis;
a ‘trigger’ impulse pushes data

into comparer

updated chords from score

propability gate

trigger calls at analysis
window frequency

 

Fig. 2. Input-output flow for comparison of spectral peaks 

5.1   Analysis  

The analysis phase outputs the four most prominent spectral peaks as frequency-
amplitude pairs, an impulse upon note-on detection, a continuous amplitude envelope 
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and a fundamental pitch estimation. The original algorithm used is described in [30]. 
The spectral peaks are gated with an amplitude threshold and a probability gate, and 
the running update can – but may not necessarily, depending on the settings of these 
gates – store new values at analysis window frequency, for possible passing on to the 
comparer.  

5.2   Data Triggering  

Input to the comparer is triggered in parallel by four methods, individually controlled 
in terms of density, and combined into one output (fig. 2): 

1. analysis window frequency, 
2. a rhythmizised trigger, 
3. by note onset detection, and  
4. single comparison trigger (a ‘snapshot’), called from within the application. 
 

Triggering at analysis window frequency is basically a simple, additive resynthesis 
approach with four waveforms. The rythmizised trigger is produced by an algorithm 
generating onset pulses at timed intervals, with control of regularity of the pulse and 
probability of the trigger impulse taking place. Note onset triggering is determined by 
changes in amplitude or fundamental and passed through a threshold and probability 
gate, while single comparison triggers are called from within the application when 
required. 

frequency

octave-pitch

match/change pitch

place new
pitch-class within
running limits

frequency

gate

high-level performance data
(amplitude envelope, spectral envelope)

pass octave

collect octave and
new pitch

transpose?

updated chord structure,
stored as pitch-class sets

frequency-amplitude pairs

amplitude; for duration
and amplitude scaling

(fig. 6)

 

Fig. 3. The comparor 
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When a trigger is effectuated, it is pushes the most recent frequency-amplitude 
pairs received from the running analysis into the comparer for parsing, which in turn 
will return new frequency-amplitude pairs. 

 
Fig. 4. Score example from La Quintrala, third staff is supporting pitch-classes 

5.3   Data Comparison 

The second part parses the triggered frequency-amplitude pairs based on the stored 
pitch-classes and a set of parameters. The frequencies from the analyzer are converted 
to midi pitches and octave and pitch class are separated (fig. 3). The octave is passed, 
and the pitch is matched to a reference pitch-class set. This pitch-class set is stored in 
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memory, and passed to the comparer as the events in the score are advanced by hand 
in performance. 

The stored pitch-classes define which pitch-classes are the basis of the melodic 
material at those particular bars of the accompanying score (fig. 4). The pitch-class 
sets have been defined beforehand as a chordal structure that supports a given 
subsection of the melody. I derived these chordal structures from the melodic material 
they supported, which in turn was developed from the requirements of the libretto in 
terms of dramatic content and musical needs. The structures were made with an 
informal technique of floating pitch connection, with no functional harmony. The 
chords can be seen as chroma, i.e. pitch-classes independent of octave placement and 
inversion, and each chord usually delimits a time segment corresponding to a melodic 
segment that can be sustained by a set of up to five pitches. 

The comparison produces a pitch-class output describing the best musical  
match to accompany the singing. The best match is modified by an index so as to 
make it possible to vary the consonance/dissonance relation between singer and 
soundscape/accompaniment, since the best musical match for compositional reasons 
wouldn’t necessarily be the most consonant match. The resulting pitch-class is  
then either re-collected with the octave information, or the octave information is 
discarded and the pitch-class is placed within a running low-high pitch limit.  
The harmonic structures become ‘associative’ as pitch centers attract the melody 
and thereby is perceived to shape and guide the melodic contours. Equation (1) 
handles this, as well as micro-tonal deviations according to a dissonance  
factor. 

y = int(x) + d*x mod 1 for 0.  x mod 1 < 0.5 
y = int(x) + 1 - d*abs(x mod 1 - 1) for 0.5  x mod 1 < 1 . 

(1) 

where d is dissonance factor. 
The comparisor handles pitch-classes as a container of microtonal pitch informa-

tion 0.5 semitones above and below its center. Applying gradual controls to these 
containers makes it possible to ’pull in’ the generated frequencies towards the stored 
chord, or to ‘release’ them. This works well in conjunction with running pitch output, 
even though it defeats the tonal precision of the accompaniment. 

The running low-high pitch limit is correlated to the running amplitude envelope 
with parameters for center, follow, and range (equation 2). The center value follows 
the amplitude envelope either directly or inversely according to the follow value, 
which specifies the center offset at maximum amplitude. 

c + (a*f) + 0.5*r = high limit 
c + (a*f) - 0.5*r = low limit . 

(2) 

where c is pitch center, r is pitch range, a is amplitude envelope, and f is the follow 
factor expressed as the ratio pitch-steps/max-amplitude. 

The singer can hereby affect the pitch range of the output of the comparer in per-
formance, and the code for equations (1) and (2) can be seen in (fig. 5). 
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Fig. 5. Code examples of equations (1) and (2) 

5.4   Amplitude as Expressive Parameter 

The amplitude obtained during analysis is also applied to note duration and base am-
plitude of the corresponding frequency-amplitude pair from the comparer (fig. 6). It 
made sense to have the ability to apply amplitude envelopes to the comparison results, 
because this would make it possible to affect sound synthesis taking place elsewhere 
in the application, provided it recognized such data. It would serve the need for sub-
jective, dynamic mapping of expressive data according to the evolving musical needs 
as I perceived them. Such expressive data doesn’t interfere with the pitch estimation 
algorithm but affects the duration and amplitude of each comparison result on an ad-
hoc basis (as well as the pitch range, as described by equation 2). High-level parame-
ters were devised for generalized control, so that duration information was submitted 
to a scaling value where positive scaling would yield longer durations for higher am-
plitudes, zero would be unity duration, while negative scaling value would yield 
shorter durations. 

5.5   Direct Audio Output 

Finally, a direct output was added whereby each comparison result would be  
played back as an audio waveform, using the above mentioned amplitude envelope.  
 



178 L. Graugaard 

 

amplitude of frequency; from input to comparer

collect frequency-amplitude pair

envelope amplitude

map/inverse map,
louder is longer/louder is shorter

scaling index

duration index (-1. - 1.)

frequency
from output of comparer

 

Fig. 6. Duration scaling by amplitude 

Parameters are exposed for switching waveform (not necessarily being a sinusoid), 
setting the amplitude envelope, and for spatial placement in a four channel XY-field. 

5.6   The System in Performance  

The system shapes the accompaniment by some combination of stored information 
pertaining the requirements of the composition together with the needs of the singers 
for vocal cueing, and the dramatic content of the moment as it develops on stage in 
interaction between the characters. As a result of this combined approach, the accom-
panying electronic soundscape in ‘La Quintrala’ could reconcile formal, composi-
tional needs for structure and tonal support with sonic manifestation of immediate 
emotion expressed during performance by the singers. Furthermore, the possibility  
to make gradual transitions between these two requirements provided flexibility  
in handling transitions between different musical contexts. The combination of sound 
algorithm and analysis data affecting the spectral content of the synthesis proved  
an effective way to enhance the presence of the performer in the electronic accompa-
niment and project the singer’s musicality into the accompaniment. In fact, the  
accompaniment in ‘La Quintrala’ was very often described to me by members of  
the audience as an immediate, aural manifestation of the psychological disposition  
of the singers, and of the emotional charge of a scene. 

The singers’ expressivity and musicality projected into the electronics of ‘La Quin-
trala’ is one of interplay rather than actual control, since the algorithms driving the 
sound synthesis as well as my decisions on handling the correlation exceptions of 
analysis output versus stored chordal structure are partially hidden to them. This 
should not cause concern, because interaction implies some degree of lack of control 
on part of the musical performer [25]. The purpose of giving presence to the singers 
did not coincide with giving (full) control over the electronic score, since the drama 
being developed isn’t determined by such local action-reaction mechanisms, but by 
the larger-scale dealings and consequences. The singers’ psychological dispositions 
are manifested and evolves in the electronics, and the resulting expansion – or intensi-
fication – of the dramatic content multiplies the emotional substance in a way very 
appropriate to opera. 
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6   Research Background 

The system relates primarily to score following, signal decomposition, performer-
computer interaction, interactive music accompaniment systems, and presence  
enhancement and mood creation. 

6.1   Signal Decomposition 

The score correlation method presented doesn’t include original work on signal  
decomposition, but it was important to choose the proper method for audio analysis. 
The algorithm used is described in [30], and subsequently AltiVec optimized and 
further developed by Jehan et al. [20], even though the authors don’t specify how  
the algorithm was enhanced. The analysis algorithm outputs doesn’t distinguish  
between sinusoidal and noise component, but it performs reasonably well for my 
purpose, since the signal analyzed in ‘La Quintrala’ is known to be a – mostly –  
periodic signal. 

Signals with a large noise component or in circumstances of low signal-to-noise ra-
tio are not well handled by pure spectral peak estimation. A procedure is proposed in 
[16] for preanalyzing a signal for spectral peaks corresponding to true sinusoidal 
components, whereby the influence of noise on the analysis result is considerably 
reduced. The technique seems presently too slow for real time application. An ap-
proach for classifying the spectral peaks into noise and sinusoidal peaks is presented 
in [31], where the authors suggest to limit the number of candidate peaks in order to 
reduce the computational cost. This approach is relevant to my purpose, as I only 
need a limited number of peaks. 

Conventional content-based audio representations use statistical characteristics, but 
this has limitations in terms of content representation as described in [26]. A content-
based retrieval system has been described in [1] and the authors reported experiments 
which show that the singular value of the ‘first principle component’ usually is greatly 
higher than others for the purpose of general feature extraction. This is comparable to 
the pitch estimation in terms of precision of perception, and accommodates for fluc-
tuations resulting from the expressive musicality of the performance. Such analysis 
methods would enhance the decomposition for extracting high-level expressivity data. 

The need for real time analysis puts restrictions on the algorithms. Not all ap-
proaches mentioned are therefore feasible at this moment, even if they suggest results 
that could be very useful for my purpose. But given the development in computational 
power and in the algorithms themselves, it must be expected that real time analysis 
methods will develop further features such as those mentioned. 

6.2   Score Following 

Score correlating in ‘La Quintrala’ has the purpose of cueing and tonally supporting a 
singer, by relating the spectral content to a stored chord, and to sonically enhance the 
presence of the singer in the accompaniment. Score correlating is related to score 
following, and it was indeed my intention to include score following functionality in 
‘La Quintrala’. Score following gives score position and future tempo estimate, for 
advancing the computer’s reading of the electronic score in synchronization with the 
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performance of the music. For this purpose score following attempts to transform the 
performance into a real-time sequence of note onsets and their corresponding discrete 
pitch. 

Score following was first presented by Barry Vercoe and Roger Dannenberg in 
1984 [34, 9, 10]. Later systems pioneered at IRCAM [28] tried to minimize system 
latency rather than predicting tempo, since steadfast tempo often would be absent 
from performance, or possibly only vaguely implied. One of the first examples of 
these efforts was Philippe Manoury’s composition ‘Jupiter’ for flute and interactive 
computer. It consists of a great many events to be automatically triggered through the 
proper advancing by the score following algorithm. This works fairly well, but not 
sufficiently reliable to avoid human supervision during performance. But while the 
flute is a relatively simple signal to track, it was of concern to me that the singing 
voice is a particularly difficult subject for such detection [28]. The voice is an ex-
tremely flexible ‘instrument’ characterized by timbral and dynamic richness – the 
voice has a dynamic range of up to 55dB – and capable of a great many expressive 
performance parameters such as vibrato and glissandi, let alone the particular influ-
ence of the sung text. All these performance ‘artifacts’ make fast and accurate onset 
and pitch detection for score following purposes unreliable, if at all possible. For this 
reason any score following functionality was eventually left out of ‘La Quintrala’, 
since the purpose was to rely solely on the follower to advance the events. 

A method for tracking the score position of a singer based on stochastic procedures 
was later presented in [14]. In order to increase reliability, the authors suggested to 
extend the score following model to include features other than fundamental pitch. 
Tracking through stochastic modeling a variety of performance data using hidden 
markov models was presented in [7] and [27]. In the latter system, the authors treated 
the problem as a subclass of sequence alignment, and expanded on techniques first 
developed in speech recognition and in molecular genetics. A technique for use with 
nonlinear, open-form score notation has been described in [23]. The follower was 
mainly used for audio routing and mixing purposes, based on the ‘crossroad’ concept 
known from some open-form compositions. The linearity of standard score notation 
was avoided by using a noise-reduced confidence-index to locate the tracker in the 
sections. The index would then be used for making global changes at signal routing 
and mixing level, but also of signal processing algorithms. 

Score following in its extreme is an automated accompaniment system, and at-
tempts have been made at refining and commercializing such systems. [18], [21], and 
[19] describe systems that accompany amateur vocalists performing pop music. The 
first two rely on pitch detection for tracking the performer, while the last applies 
speech processing techniques for vowel recognition. The systems attempt to identify 
both the score position and the tempo of the performer, and to adjust the computer 
accompaniment in response. CODA Music Group introduced with SmartMusic™ a 
commercial accompaniment system for amateur musicians. 

The latest score following algorithms have reached a fair degree of accuracy, but 
the somewhat more simple score following algorithms I considered for ‘La Quintrala’ 
are prone to errors. On the one hand the performer may make errors in performance, 
while real time audio analysis algorithms on the other hand aren’t fail-safe concerning 
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pitch estimation. And if the musician falters then it is of little comfort if the following 
algorithm works correctly. Consequently, it becomes mandatory to compose for easier 
performance and score following, such as avoiding writing which cannot be accu-
rately followed because it doesn’t translate easily into simple notation, or avoid pas-
sages which are of great difficulty in interpretation or execution. The compositional 
consequences of these stability issues made me refrain from including score following 
in ‘La Quintrala’: it would limit the score notation unacceptably (and hence the musi-
cal possibilities), and it seemed moot when the performance in any case would have 
to be supervised, due to the risk of failings of the tracking. 

6.3   Mood Creation and Presence Enhancement 

Most score following systems are concerned with extracting pitch and duration of a 
musical performance. Yet expressivity is one of the salient features in music apprecia-
tion. It has been my intention to map expressiveness onto the electronic soundscape 
through mapping salient performance aspects onto high-level output parameters. Ob-
servations are made in [8] concerning how parametrization is capable of trivializing 
or enhancing interactivity in a human-machine relationship, and mood creation 
through adding expressiveness to an automatic musical performance is described in 
[4]. In [3] a performance was analyzed and the data applied to a computer-generated 
performance, resulting in robust detection of the emotional intention by expert listen-
ers. It could therefore be considered to map such data onto synthesis algorithms, and 
signal routing and mixing. 

Real time emotion tracking is described in [13], where a limited set of cues can ac-
curately predict a set of emotional expressions, without using any score information. 
The system compares the extracted cues to a previously stored reference input, and 
the strong intercorrelation of the cues in a given emotion makes for quite accurate 
prediction. The authors use the output for a graphical representation of the intended 
emotions, but this data could just as well be used for high-level control of synthesis 
algorithms, and signal routing and mixing. Another system, designed to work with 
MIDI instruments, is described in [6]. The basis is a ‘Perceptual Parametric Space’ 
described in [5] which relate sets of coefficients to acoustic quantities. The system 
would require accurate fundamental pitch estimation, note duration, etc. in order to 
work with an audio signal. 

Emotion as acquired sensibility towards art and music is presented with reference 
to its Japanese word ‘kansei’ in [17]. The author describes this as the third target of 
information processing referring to feelings, intuition, and sympathy, while the sec-
ond target is semantic symbol processing, and the first target being the physical sig-
nal. Contributions in the area of ‘kansei’ encompassing not only music are described 
in ao. [2]. Emotion can be broken down to a fairly limited set of parameters, and fol-
lowing these parameters have proven to give fairly precise results for predicting the 
emotion intended. I have tentatively interpreted selected performance parameters and 
projected them onto synthesis algorithms, signal routing and mixing, and other aspect 
of an expressive space. This seems as a fertile area which requires a fine balance 
between the trivializing and enhancing, the obvious and obscure, and the traceable 
and multidimensional [24]. 
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7   Conclusions, Further Development, and Other Applications 

The described performer-accompaniment unification approach proved very effective 
in musical drama. Projecting emotions into an accompanying soundscape as they are 
exposed by the singers on stage enhances the audience’s appreciation of their pres-
ence and mood which in turn enhances the dramatic content and development, 
strongly engaging the audience’s attention.  

A content-based system for analyzing the audio as suggested will be considered. 
Interactive instrumental music without dramatic action may contain a high emo-

tional, yet abstract impact, even though the voice is the one instrument which offers 
the widest range of possible variation in timbre. Interactive instrumental music with-
out dramatic action still has a high emotional import which isn’t referred to any object 
or objective. This presumes that we accept that music really is a language of emotion, 
primarily expressing the composer’s knowledge of human feeling, as expressed in 
[22]. The performer-accompaniment unification approach seems therefore readily 
adaptable to interactive instrumental music as well, where attaching performance 
expressivity to the electronic soundscape in parallel with more ‘autonomous’ evolu-
tion of the soundscape could be used to advantage. I therefore intend to apply the 
technique of expressive projection in interactive, instrumental music, and expect to 
find further development possibilities in this area, and most likely quite different from 
those explored in ‘La Quintrala’. 
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Abstract. This paper presents a comparison between traditional and automatic 
approaches for the extraction of an audio descriptor to recognize chord into 
classes. The traditional approach requires signal processing (SP) skills, con-
straining it to be used only by expert users. The Extractor Discovery System 
(EDS) [1] is a recent approach, which can also be useful for non expert users, 
since it intends to discover such descriptors automatically. This work compares 
the results from a classic approach for chord recognition, namely the use of 
KNN-learners over Pitch Class Profiles (PCP), with the results from EDS when 
operated by a non SP expert. 

1   Introduction 

Audio descriptors express by mathematical formula a particular property of the sound, 
such as the tonality of a musical piece, the amount of energy in a given moment, or 
whether a song is instrumental or sung. Although the creation of each descriptor re-
quires a different study, the design of a descriptor extractor normally follows the 
process of combining the relevant characteristics of acoustic signals (features) using 
machine learning algorithms. These features are often low-level descriptors (LLD), 
and the task usually requires important signal processing knowledge. 

Since 2003, a heuristic-based approach became available through the Computer  
Science Lab of Sony in Paris, which developed the Extractor Discovery System (EDS). 
The system is based on genetic programming, and machine learning algorithms em-
ployed to automatically generate a descriptor from a database of sound files examples 
and their respective perceptive values. EDS can be used either by non experts or expert 
users. Non experts can use it as a tool to extract descriptors, even with minimal or no 
knowledge at all in signal processing. For example, movie makers have created classi-
fiers of sound samples to be used in their films (explosions, car breaks, etc.). Experts 
can use the system to improve their results, starting from their solution and then con-
trolling and guiding EDS. For instance, the perceived intensity of music titles can be 
more precisely revealed, taking as a starting point the mpeg7 audio features [2]. 

We are currently designing a guitar accompanier for “bossa nova” style. During  
the application development process, we ran into the problem of recognizing a  
chord, which turned out to be a good opportunity of comparing classical and EDS  
approaches. On the one hand, chord recognition is a well studied domain, with solid 
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results that can be considered as reference. On the other hand, current techniques use 
background knowledge that EDS (initially) does not have (pitches, harmony). Good 
EDS results would indicate the capacity of the system to deal with real world musical 
description cases.  

We intend to compare the results from a standard technique of chord recognition 
(KNN learner over Pitch Class Profiles) and those from EDS, when operated by an 
inexperienced user (so called Naïve EDS) and by an expert user (so called Expert 
EDS). This paper presents the first part of this comparison, considering only the  
results obtained by the Naïve EDS. In the next section, we introduce the chord recog-
nition problem. In section 3 we explain the most widely used technique. In section 4 
we examine EDS, how it works and how to use it. Section 5 details the experiment. 
Section 6 shows and discuss the results. Finally, we draw some conclusions and point 
future works. 

2   Chord Recognition 

The ability of recognizing chords is important for many applications, such as interac-
tive musical systems, content-based musical information retrieval (finding particular 
examples, or themes, in large audio databases), and educational software. Chord rec-
ognition means the transcription of a sound into a chord, which can be classified ac-
cording to different levels of precision, from a simple distinction between maj and 
min chords to a complex set of chord types (maj, min, 7th, dim, aug, etc).  

Many works can be mentioned here as the state of the art in chord recognition. [4] 
and [5] automatically transcribes chords from a CD recorded song. [3] deals with a 
similar problem: estimating the tonality of a piece (which is analogous to the maj/min). 
In most cases the same core technique is used (even if some variations may appear 
during the implementation phase): the computation of a Pitch Class Profile, or chro-
magram, and a subsequent machine learning algorithm to find patterns for each chord 
class. This technique has been applied to our problem, as we explain in next section. 

3   Traditional Technique: Pitch Class Profiles 

Most part of the works involving harmonic content (chord recognition, chord segmen-
tation, tonality estimation) uses a feature called Pitch Class Profile (PCP) [6]. PCPs 
are vectors of low-level instantaneous features, representing the intensity of each 
pitch of the tonal scale mapped to a single octave. These vectors are calculated as 
follows: 1) a music recording is converted to a Fourier Transform representation 
(Fig1a to Fig1b). 2) the intensity of a pitch is calculated (Fig1b to Fig1d) by the mag-
nitude of the spectral peaks, or by summing the magnitudes of all frequency bins that 
are located within the respective frequency band (Fig1c). 3) The equivalent pitches 
from different octaves are summed, producing a vector of 12 values (eventually 24 to 
deal with differences in tuning and/or to gain in performance), consequentially unify-
ing various dispositions of a single chord class (Fig1e and Fig1f). For example, one 
can expect that the intensities of the frequencies corresponding to the notes C, E and 
G in the spectrum of a Cmaj would be greater than the others, independently on the 
particular voicing of the chord. 
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d) e) f)

 

Fig. 1. Steps to compute a PCP. The signal is converted to Fast-Fourier representation; the FFT 
is divided into regions; the energy of each region is computed; the final vector is normalized. 

 

Fig. 2. Example of the PCP for a Amaj7. Each column represents the intensity of a note, inde-
pendently on the octave. 

 

Fig. 3. Example of the PCP for a Cmaj7 
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The idea of using PCPs to chord recognition is that the PCPs of a chord follow a 
pattern, and that patterns can be learned from examples. Thus, machine learning (ML) 
techniques [9] can be used to generalize a classification model from a given database 
of labeled examples, in order to automatically classify new ones. So, for the PCP of a 
chord, the system will respond the most probable (or closest) chord class, given the 
examples previously learned. The original PCP implementation from Fujishima used 
a KNN learner [6], and more recent works [3] successfully used other machine learn-
ing algorithms.  

4   EDS 

EDS (Extractor Discovery System), developed at Sony CSL, is a heuristic-based ge-
neric approach for automatically extracting high-level music descriptors from acoustic 
signals. EDS is based on Genetic Programming [11], used to build extraction func-
tions as compositions of basic mathematical and signal processing operators, such as 
Log, Variance, FFT, HanningWindow, etc. A specific composition of such operators 
is called feature (e.g. Log (Variance (Min (FFT (Hanning (Signal)))))), and a combi-
nation of features form a descriptor. 

Given a database of audio signals with their associated perceptive values, EDS is 
capable to generalize a descriptor. Such descriptor is built by running a genetic search 
to find relevant signal processing features to match the description problem, and then 
machine learning algorithms to combine those features into a general descriptor 
model. 

 

Fig. 4. EDS main interface 

The genetic search performed by the system is intended to generate functions  
that may eventually be relevant to the problem. The best functions in a population  
are selected and iteratively transformed (by means of reproduction, i.e., constant 
variations, mutations, and/or cross-over), always respecting the pattern chosen by  
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the user. The default pattern is !_x(Signal), which means a function presenting any 
number of operations but a single value as result. The populations of functions keep 
reproducing until no improvement is achieved. At this point, the best functions are 
selected to be combined. This selection can be made both manually or automatically. 
For example, given a database of audio files labeled as ‘voice’/‘instrumental’, kept 
the default pattern, these are some possible functions that might be selected by the 
system: 

 
Log10 (Range (Derivation (Sqrt (Blackman (MelBands (Signal, 24.0)))))) 
 
Square  (Log10  (Mean  (Min  (Fft (Split (Signal, 4009)))))) 

Fig. 5. Some possible EDS features for characterizing a sound as vocal or instrumental 

The final step in the extraction process is to choose and compute a model (linear 
regression, model trees, knn, locally weighted regression, neural networks, etc.) that 
combines all features. As an output, EDS creates an executable file, which classifies 
an audio file passed as argument. 

In short, the user needs to 1) create the database, in which each recording is labeled 
as its correspondent class. 2) write a general pattern for the features and launch the 
genetic search. The pattern encapsulates the overall procedure of the feature. For ex-
ample, !_x(f:a(Signal)) means that the signal is initially converted into the frequency 
domain, then some operation is applied to get a single value as a result. 3) select the 
appropriate features. 4) choose a model to combine the features. Although an expert 
user may drive the system (starting from an initial solution, including heuristics for the 
genetic search, etc), EDS has a fully automated mode, in which a default pattern is 
chosen, the most complementary features are selected and all models are computed. 
This mode is particularly attractive for non expert user, as he/she just needs to be able 
to create and label the database. That is the mode explored in this paper. 

5   Bossa Nova Guitar Chords 

Our final goal is to create a guitar accompanier in Brazilian “bossa nova” style. Con-
sequently, our chord recognizer has examples of chords played with nylon guitar. The 
data was taken from D’accord Guitar Chord Database [10], a guitar midi based chord 
database. The purpose of using it was the richness of the symbolic information pre-
sent (chord root, type, set of notes, position, fingers, etc.), which was very useful for 
labelling the data and validating the results. Each midi chord was rendered into a wav 
file using Timidity++ [12] and a free nylon guitar patch, and the EDS database was 
created according to the information found in D’accord Guitar database. Even though 
a midi-based database may lead to distortions in the results, we judge that the com-
parison between approaches is still valid. 

5.1   Chord Classes 

We tested the solutions with some different datasets, reflecting the variety of nuances 
that chord recognition may show: 
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AMaj/Min – classifies between major and minor chords, given a fixed root (La). 
There were 101 recordings, labelled in 2 classes. 

Chord Type, fixed root – classifies among major, minor, seventh, minor seventh 
and diminished chords, given a fixed root (A or C). There were 262 samples, divided 
in 5 classes, 

Chord Recognition – classifies major, minor, seventh, minor seventh and dimin-
ished chords, in any root. There were 1885 samples, labelled in 60 classes. 

80% of each database is settled on as the training dataset and 20% as the testing 
dataset. 

5.2   Pitch Class Profile 

In our implementation of the pitch class profile, frequency to pitch mapping is 
achieved using the logarithmic characteristic of the equal temperament scale, as illus-
trated in Fig. 5. The intensity of each pitch is computed by summing the magnitude of 
all frequency bins that correspond to a particular pitch class. The same computation is 
applied to a white noise and the result is used to normalize the other PCPs. 

 
Fig. 6. Frequency to pitch mapping 

For the chord recognition database, PCPs were rotated, meaning that each PCP 
was computed 12 times, one time for each possible rotation (for instance, a Bm is 
equivalent to a Am rotated twice). After the PCP computation, several machine learn-
ing algorithms could have been applied. We implemented 2 simple solutions. The first  
 

 

Fig. 7. Example of a template PCP for a C chord class 
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one calculates a default (template) PCP to each chord class. Then, the PCP of a new 
example can be matched up to the template PCP, and the most similar one is retrieved 
as the chord. 

The second one uses the k-nearest neighbours algorithm (KNN), with maximum of 
3 neighbours. KNNs have been used since the original PCP implementation and have 
proved to be at least one of the best learning algorithms for this case [3]. 

5.3   EDS 

The same databases were loaded in EDS. We ran a fully automated extraction, keep-
ing all default values. The system generated the descriptor without any help from the 
user, obtaining the results we call EDS Naïve, because they correspond to the results 
that a naïve user would achieve. 

6   Results and Discussion 

The results achieved by us are presented in the table 1. Rows represent the different 
databases. Columns represent the different learning techniques. The percent values 
indicate the number of correctly classified instances over the total number of exam-
ples in the testing database. 

As we can see, EDS gets really close to classical approaches when the root is 
known, but disappoints when the whole problem is presented. It seems that a combi-
nation of low level functions is capable of finding different patterns in the same root, 
but the current palette of signal processing functions in EDS is not sufficient to gener-
alize harmonic information. Sections 6.1, 6.2 and 6.3 detail the features that were 
found. 

Table 1. Percentage of correctly classified instances for the different databases using the 
studied approaches 

Approach 
Database 

PCP  
Template 

KNN EDS 

Maj/Min (fixed 
root) 

100% 100% 90.91% 

Chord Type (fixed 
root) 

89% 90.62% 87.5% 

Chord Recognition 53.85% 63.93% 40.31% 

6.1   Case 1: Major/Minor Classifier, Fixed Root 

Figure 5 shows the selected features for the Amaj/min database. The best model ob-
tained was a KNN of 1 nearest neighbour, equally weighted, absolute error (see [9] 
for details). The descriptor reached 90.91% of the performance of the best traditional 
classifier. 
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EDS1: Power (Log10 (Abs (Range (Integration (Square (Mean (FilterBank 
(Normalize (Signal), 5.0))))))), -1.0) 

EDS2: Power (Log10 (Abs (Range (Sqrt (Bartlett (Mean (FilterBank 
(Normalize (Signal), 9.0))))))), -1.0) 

EDS3: Sqrt (Range (Integration (Hanning (Square (Mean (Split (Signal, 
3736.0))))))) 

EDS4: Arcsin (Sqrt (Range (Integration (Mean (Split (Normalize (Sig-
nal), 5862.0)))))) 

EDS5: Log10 (Variance (Integration (Bartlett (Mean (FilterBank (Nor-
malize (Signal), 5.0)))))) 

EDS6: Power (Log10 (Abs (Range (Integration (Square (Sum (FilterBank 
(Normalize (Signal), 9.0))))))), -1.0) 

EDS7: Square (Log10 (Abs (Mean (Normalize (Integration (Normalize 
(Signal))))))) 

EDS8: Arcsin (Sqrt (Range (Integration (Mean (Split (Normalize (Sig-
nal), 8913.0)))))) 

EDS9: Power (Log10 (Abs (Range (Sqrt (Bartlett (Mean (FilterBank 
(Normalize (Signal), 3.0))))))), -1.0) 

Fig. 8. Selected features for the Amaj/min chord recognizer 

6.2   Case 2: Chord Type Recognition, Fixed Root 

Figure 6 shows the selected features for the chord type database. The best model  
obtained was a GMM of 14 gaussians and 500 iterations (see [9] for details). The 
descriptor reached 96,56% of the performance of the best traditional classifier. 

 
EDS1: Log10 (Abs (RHF (Sqrt (Integration (Integration (Normalize 
(Signal))))))) 

EDS2: Mean (Sum (SplitOverlap (Sum (Bartlett (Split (Signal, 
1394.0))), 4451.0, 0.5379660839449434))) 

EDS3: Power (Log10 (Abs (RHF (Normalize (Integration (Integration 
(Normalize (Signal))))))), 6.0) 

EDS4: Power (Log10 (RHF (Signal)), 3.0) 

EDS5: Power (Mean (Sum (SplitOverlap (Sum (Bartlett (Split (Signal, 
4451.0))), 4451.0, 0.5379660839449434))), 3.0) 

Fig. 9. Selected features for the Chord Type recognizer 

6.3   Case 3: Chord Recognition 

Figure 7 shows some of the selected features for the chord recognition database. The 
best model obtained was a KNN of 4 nearest neighbours, weighted by the inverse of 
the distance (see [9] for details). The descriptor reached 63,05% of the performance of 
the best traditional classifier. It is important to notice that 40,31 % is not necessarily a 
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bad result, since we have 60 possible classes. In fact, 27,63% of the wrongly classi-
fied instances were due to mistakes between relative majors and minors (e.g; C and 
Am); 40,78% due to other usual mistakes (e.g. C and C7; C° and Eb°; C and G); only 
31,57% were caused by unexpected mistakes. Despite these remarks, the comparative 
results are significantly worse than the previous ones. 

 
EDS1: Square (Log10 (Abs (Sum (SpectralFlatness (Integration (Split 
(Signal, 291.0))))))) 

EDS4: Power (Log10 (Abs (Iqr (SpectralFlatness (Integration (Split 
(Signal, 424.0)))))), -1.0) 

EDS9: Sum (SpectralRolloff (Integration (Hamming (Split (Signal, 
4525.0))))) 

EDS10: Power (Log10 (Abs (Median (SpectralFlatness (Integration 
(SplitOverlap (Signal, 5638.0, 0.7366433546185794)))))), -1.0) 

EDS12: Log10 (Sum (MelBands (Normalize (Signal), 7.0))) 

EDS13: Power (Median (Normalize (Signal)), 5.0) 

EDS14: Rms (Range (Hann (Split (Signal, 9336.0)))) 

EDS15: Power (Median (Median (Split (Sqrt (Iqr (Hamming (Split (Sig-
nal, 2558.0)))), 4352.0))), 1.5) 

EDS17: Power (HFC (Power (Correlation (Normalize (Signal), Signal), 
4.0)), -2.0) 

EDS18: Square (Log10 (Variance (Square (Range (Mfcc (Square (Hamming 
(Split (Signal, 9415.0))), 2.0)))))) 

EDS19: Variance (Abs (Median (Hann (FilterBank (Peaks (Normalize 
(Signal)), 5.0))))) 

EDS21: MaxPos (Sqrt (Normalize (Signal))) 

EDS22: Power (Log10 (Abs (Iqr (SpectralFlatness (Integration (Split 
(Signal, 4542.0)))))), -1.0) 

Fig. 10. Some of the selected features for the chord recognizer 

6.4   Other Cases 

We also compared the three approaches on other databases, as we can see in the  
table 2. MajMinA is the major/minor classifier, root fixed to A. ChordA is the chord 
type recognizer, root fixed to A. ChordC is the chord type recognizer, root fixed to C. 
RealChordC is the same chord type recognizer in C, but the testing dataset is  
composed by real audio recordings (samples of less than 1 second of chords played in 
a nylon guitar), instead of midi rendered audio. Curiously, in this case, the EDS solu-
tion worked better than the traditional one (probably due to an alteration in tuning in 
the recorded audio). Chord is the chord recognition database. SmallChord is a smaller 
dataset (300 examples) for the same problem. Notice that in this case EDS outper-
formed KNN and PCP Template. In fact, the EDS solution does not improve very 
much when passing from 300 to 1885 examples (from 38,64% to 40,31%), while the 
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KNN solution goes from 44% to 63,93%. Finally, RealChord has the same training 
set from the Chord database, but is tested with real recorded audio.  

The results from these databases confirm the trend of the previous scenario. The 
reading of the results indicates that the effectiveness of the EDS fully automated de-
scriptor extraction depends on the domain it is applied to. Even admitting that EDS 
(in its current state) is only partially suited to non expert users, we must take into 
account that EDS currently uses a limited palette of signal processing functions, 
which is being progressively enhanced. Since EDS didn’t have any information about 
tonal harmony, it was already expected that it would not reach the best results. Even 
though, the results obtained by the chord recognizer with a fixed root show the power 
of the tool. 

Table 2. Comparison between the performance of the EDS and the best traditional classifier for 
a larger group of databases. Comparative performance = EDS performance / traditional 
technique performance. 

DB NAME 
Comparative  
Performance 

MajMinA 90,91% 

ChordA 94,38% 

ChordC 96,56% 

Chord 63,05% 

SmallChord 87,82% 

RealChordC 116,66% 

RealChord 55,16% 

7   Conclusion and Future Works 

In this paper we compared the performance of a standard chord recognition technique 
and the EDS approach. The chord recognition was specifically related to nylon guitar 
samples, since we intend to apply the solution to a Brazilian style guitar accompanier. 
The standard technique was the Pitch Class Profiles, in which frequency intensities 
are mapped to the twelve semitone pitch classes, and then uses KNN classification to 
chord templates. EDS is an automatic descriptor extractor system that can be em-
ployed even if the user does not have knowledge about signal processing. It was oper-
ated in a completely naïve way so that the solution and the results would be similar to 
those obtained by a non expert user.  

The statistical results reveal a slight deficit of EDS for a fixed root, and a greater 
gap when the root is not known a priori, showing its dependency on primary opera-
tors. An initial improvement is logically the increase of the palette of functions.  
Currently, we are implementing tonal harmony operators such as chroma and 
pitchBands, which we suppose will provide much better results. Additionally, as the 
genetic search in EDS is indeed an optimisation algorithm, if the user starts from a 
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good solution, it will be expected that the algorithm makes it even better. The user can 
also guide the function generation process, via more specific patterns and heuristics. 

With these actions, we intend to perform the second part of the comparison  
we started in this paper – between the traditional techniques and EDS operated by a 
signal processing expert. 
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Abstract. Discovering artists that can be considered as prototypes for
particular genres or styles of music is a challenging and interesting task.
Based on preliminary work, we elaborate an improved approach to rank
artists according to their prototypicality. To calculate such a ranking, we
use asymmetric similarity matrices obtained via co-occurrence analysis
of artist names on web pages. In order to avoid distortions of the ranking
due to ambiguous artist names, e.g. bands whose name equal common
speech words (like “Kiss” or “Bush”), we introduce a penalization func-
tion. Our approach is demonstrated on a data set containing 224 artists
from 14 genres.

1 Introduction and Related Work

Prototypical artist detection provides valuable information for a wide range of
applications related to music information retrieval. For example, music infor-
mation systems like the All Music Guide1 as well as online music stores, e.g.
Amazon2, could benefit considerably. For instance, information on prototypes
could be exploited to support their users in finding music more efficiently. Fur-
thermore, prototypical artists are very useful for visualizing music repositories
since they are usually well-known. Thus, they can serve as reference points to
discover similar but less known artists (for more details, see [4]).

To obtain an estimate for the prototypicality of artists, we exploit informa-
tion on co-occurrences of artist names on web pages. We already showed that
web-based co-occurrence analysis can be used successfully for artist similarity
measurement and artist-to-genre classification [3]. In this paper, we will use the
(approximate) page counts of Google requests for artists to estimate conditional
probabilities for an artist to be found on web pages of other artists. These prob-
abilities give an asymmetric similarity matrix which is used for the calculation

1 http://www.allmusic.com
2 http://www.amazon.com

R. Kronland-Martinet, T. Voinier, and S. Ystad (Eds.): CMMR 2005, LNCS 3902, pp. 196–200, 2006.
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of a prototypicality ranking (cf. [3]). By introducing a penalty term in the def-
inition of the ranking function, we overcome the emerging problem of extreme
high rankings for artists with common speech names.

The remainder of this paper is organized as follows. In Section 2, we briefly
review our already published approach and propose a method to remedy the
shortcoming of extreme prototypicality for artists that allegedly occur on many
web pages. Furthermore, we demonstrate the improvements in the method on
the basis of selected results. Finally, in Section 3, we summarize the work and
draw conclusions.

2 Prototypical Artist Detection

The obtain the information used for Prototypical Artist Detection, at first we
perform a co-occurrence analysis step. Given a list of artist names, we use Google
to estimate the number of web pages containing each artist and each pair of
artists. To this end, the only information we need is the page count returned
by Google. This raises performance and limits web traffic. Based on the page
counts, we then use relative frequencies to calculate a conditional probability
matrix. Given two events ai (artist with index i is mentioned on web page) and
aj (artist with index j is mentioned on web page), we estimate the conditional
probability pij (the probability for artist j to be found on a web page that is
known to contain artist i). The formula for calculation can be found in detail
in [3]. From this, we obtain a similarity matrix that is obviously not symmetric.

2.1 Prototype Detection Using Backlink/Forward Link Ratios

We regard the prototypicality of a music artist as being strongly related to
how often music-related web pages refer to the artist. The used method to infer
prototypicality is based on an idea similar to the PageRank mechanism used by
Google where backlinks and forward links of a web page are used to measure
relevancy [1]. In our approach we call any co-occurrence of artist a and artist b
(unequal to a) on a web page that is known to contain artist b a backlink of a
(from b). A forward link of an artist of interest a to another artist b, in contrast,
is given by any occurrence of artist b on a web page which is known to mention
artist a.

For each artist ai, we count for how many of the artists aj from the same
genre as ai the number of backlinks of ai exceeds the number of forward links
(bl), and also for how many artists how often the number of forward links of ai is
higher than the number of backlinks (fl). Then, we calculate the ratio bl/fl. The
higher this ratio, the higher the prototypicality of ai for the respective genre. A
more formal definition can be found in [4].

2.2 Downranking Artists by Penalizing Exorbitant Popularity

As results in [4] show, artist names which are also used in everyday speech are
always top-ranked, for example, Kiss from the genre Heavy Metal/Hard Rock,
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Table 1. Artist ranking according to corrected prototypicality for some genres of the
test set. Moreover, the ranking value, the original backlink/forward link (bl/fl) ratio,
and the penalty is shown for every artist.

Pop Heavy Metal/Hard Rock Alternative Rock/Indie

artist ranking rank bl/fl pen artist ranking rank bl/fl pen artist ranking rank bl/fl pen

Britney Spears 0.20 13:2 0.22 Metallica 0.44 14:1 0.25 Radiohead 0.18 11:4 0.29

Madonna 0.20 14:1 0.17 Slayer 0.38 13:2 0.29 Weezer 0.17 8:7 0.41

Janet Jackson 0.19 10:5 0.33 Iron Maiden 0.33 11:4 0.39 Beck 0.16 12:3 0.23

Avril Lavigne 0.17 10:5 0.32 AC/DC 0.30 12:3 0.32 Pearl Jam 0.16 9:6 0.36

Jennifer Lopez 0.14 9:6 0.33 Anthrax 0.24 10:5 0.38 Nirvana 0.14 13:2 0.18

Michael Jackson 0.14 12:3 0.22 Black Sabbath 0.19 9:6 0.38 Smashing Pumpkins 0.13 7:8 0.40

Christina Aguilera 0.12 8:7 0.35 Def Leppard 0.17 8:7 0.41 Sonic Youth 0.13 10:5 0.27

Robbie Williams 0.10 7:8 0.36 Kiss 0.16 15:0 0.10 Hole 0.12 14:1 0.13

ABBA 0.09 6:9 0.38 Deep Purple 0.14 7:8 0.42 Depeche Mode 0.10 6:9 0.41

N’Sync 0.08 4:11 0.50 Megadeth 0.11 6:9 0.43 Foo Fighters 0.09 5:10 0.44

Prince 0.06 15:0 0.06 Pantera 0.09 5:10 0.44 Belle and Sebastian 0.08 3:12 0.57

Justin Timberlake 0.05 4:11 0.40 Alice Cooper 0.07 4:11 0.45 Alice in Chains 0.06 3:12 0.49

Spice Girls 0.05 3:12 0.48 Judas Priest 0.05 3:12 0.46 The Smiths 0.05 3:12 0.46

Shakira 0.05 3:12 0.46 Sepultura 0.04 2:13 0.53 Jane’s Addiction 0.02 1:14 0.58

O-Town 0.03 1:14 0.64 Skid Row 0.02 1:14 0.54 Bush 0.00 15:0 0.00

Nelly Furtado 0.02 1:14 0.50 Queensryche 0.00 0:15 0.55 Echo and the Bunnymen 0.00 0:15 0.69

Bush, Hole, and Nirvana from Alternative Rock/Indie, or Prince and Madonna
from Pop. The reason for this is that such words frequently occur on web pages
and therefore produce a lot of backlinks for artists with the such names. This
kind of misleading co-occurrences are a shortcoming of web-based information
retrieval methods and could also distort the prototypicality ranking.

To avoid such distortions, we propose a mechanism that basically pursues
the idea of the commonly used information retrieval approach tf × idf (term
frequency×inverse document frequency) [2]. In this approach, importance of a
term is higher, if the term occurs frequently (high tf). On the other hand, a term
is penalized, if it occurs in many documents and thus does not contain much
relevant information (high df leads to low idf).

In our approach, we adapt this principle to penalize the prototypicality of
an artist, if it high over all genres (following the naming scheme of tf × idf ,
we could call our approach gp × iop for genre prototypicality×inverse overall
prototypicality). This is reasonable, since even for very popular and important
artists it is unlikely to be a prototype for all types of music and all artists.
Furthermore, common speech words appear on artists’ web pages independently
of their genre. Taking a closer look of the overall bl/fl ratios from [4] supports
this consideration. On the set of 224 artists, those artists with common speech
word names yield by far the highest overall bl/fl ratios, i.e. Bush (223/0), Prince
(222/1), Kiss (221/2), Madonna (220/3), and Nirvana (218/5). Thus, using
the information from the global prototypicality, we suggest ranking of artists
according to the value
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prot(a) =
blgenre(a)

flgenre(a) + 1
· penalty(a)2, (1)

where

penalty(a) = norm(log
flglobal(a)

blglobal(a) + 1
), (2)

and norm is a function that shifts all values in the positive range by subtract-
ing the smallest (non negative infinite) value, replaces infinite numbers by 0,
and normalizes the values by division by the maximum value (in the order
mentioned).

To demonstrate the effects of this revised function, Table xx shows the newly
obtained rankings for genres containing artists with common speech word names,
as well as one ranking for a genre without such artists that remained almost un-
modified. Concerning evaluation we refer at the results published in [4]. For
genres without ambiguous artist’s names results (and thus correlation with the
ranking obtained through Google queries) remain constant in principle. For
the other genres, correlation decreases. This is no negative result, since it is
the intention of our approach to overcome the susceptibility of web-based ap-
proaches for overrating of common word names.

3 Conclusions and Future Work

We presented an approach for automatic detection of prototypical artists. To
this end, we use asymmetric similarity matrices gained by co-occurrence analysis
of artist names on web pages. Based on these similarity matrices, we estimate
a prototypicality ranking for the artists using backlink/forward link ratios. To
overcome the problem of unjustified high rankings for artists whose name equal
common speech words, we apply a penalization function that weights the local
bl/fl ratios (per genre) with a penalty. This penalty is calculated using global
bl/fl ratios (computed on the complete artist set).

We demonstrated our approach on a test collection containing 224 artists of
14 genres. It was shown that the introduction of a penalization function corrects
the ranking results obtained by the simple bl/fl prototypicality ranking.

As for future work, it is planned to evaluate our approach on a larger artist
set containing 953 artists from 15 genres. This would be highly interesting since
a shortcoming of the test collection used here is that most of its artists are quite
popular and typical of their genre. Furthermore, we are currently elaborating
on heuristics to minimize the computational complexity of the co-occurrence
analysis and we hope to gain interesting insights in the near future.
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Abstract. Petri Nets are a formal tool for studying systems that are concurrent, 
asynchronous, distributed, parallel, nondeterministic, and/or stochastic.  
They were used in a number of real-world simulations and scientific problems, 
but seldom considered an effective means to describe and/or generate music. 
The purpose of this paper is demonstrating that Petri Nets (enriched with some 
peculiar extensions) can well represent the results of a musicological analysis 
process.  

1   Introduction 

This paper represents the results recently obtained at LIM (Musical Informatics 
Laboratory, State University of Milan) in the area of Music Petri Nets (Music PNs). 
This mathematical formalism, shortly introduced and defined in the following sec-
tions, can be applied to music field according to different meanings. Roughly, we 
can recognize two possible categories of applications: analysis and composition. 
However, the former and the latter aspects cannot be considered completely inde-
pendent. In fact, PN-oriented analysis would provide poor results, if not aimed at 
the comprehension of the original composition or even at the generation of a new 
music piece that shares some common features with the one previously analyzed. 
Moreover, PN-based composition itself would produce insignificant results, if not 
supported by a deep comprehension of the underlying structures, which involves – 
after all – an analysis process. In this paper, we will concentrate on the analytical 
possibilities and limitations related to the application of Petri Nets to music field. 
The possible consequences in music composition will not be explored, and will  
represent one of the subjects of our future work. 

When applied to music analysis activities, the adoption of Petri Nets should not in-
fluence the approach of the researcher. In fact, Petri Nets should be thought as a way 
(one of many possible ways) to express the results of the analytical process. From our 
perspective, this formalism cannot limit or influence the analysis, which is an activity 
that obviously precedes the representation of its results.  

We said that Petri Nets should not constitute a limitation, but this is not sufficient: 
we want to demonstrate that they are useful and effective. We will show that Petri Nets 
are a promising tool to represent and read music analysis results. Petri Nets were born 
to describe concurrent, asynchronous, and parallel processes, and these characteristics 
can be found in music as well. Other characteristics, such as non-determinism,  



202 A. Baratè, G. Haus, and L.A. Ludovico 

 

can be useful for music composition through Petri Nets, but are not very significant  
for analysis. 

In the following discussion, no constraints will be imposed about music to analyze: 
music works can belong to different genres, and come from different cultures,  
geographical areas and historical periods. On the contrary, we will underline the  
adequacy of Petri Nets formalism according to different degrees of abstraction in 
analysis, which will be the subject of next section. 

2   Music Analysis and Grouping Structures 

In this section we introduce the formal concept of grouping structure, as defined in 
[6]. A group can be constituted by any contiguous sequence of pitch events, undeter-
mined beats or rests. Only contiguous sequences can constitute a group. A group can 
contain smaller groups, and in this case the subgroups must be completely contained 
in the former. Finally, if a group contain at least a smaller group, it should be possible 
to partition it exhaustively in smaller groups. These conditions define a strict, non-
overlapping, recursive hierarchy, and constitute a set of grouping well-formedness 
rules. Intentionally, we don’t introduce at the moment a set of grouping preference 
rules. 

In this context, a music piece as well as a single note can constitute a group. Be-
sides, the identification of grouping structures allows extracting from the score music 
objects such as episodes, themes, rhythmic patterns, or harmonic cadences.  

Fig. 1 illustrates in a hierarchical fashion some possible groupings for a melody.1 
To reflect hierarchies, groups are represented by slurs placed beneath the music  
notation.  

 
Fig. 1. Examples of grouping structures 

Considering only 8 measures imposes serious limitations to the reachable degree 
of analysis: it doesn’t allow the segmentation in episodes of the whole first move-
ment, or the identification of recurrences of the music object represented in  
Fig. 1. Nevertheless, at least three categories of grouping structures can be identi-
fied. The most comprehensive structure (i.e. the largest group) embraces a whole 
period, whereas the two subsumed groupings reflect the subdivision of the 8-
measures period in two 4-measures phrases. More interesting, the third proposed 
grouping structure tries to highlight relationships among smaller music objects: for 

                                                           
1 W. A. Mozart, Sonata in F major KV 332 (300k) – Allegro (I movement), bars 1-8 [8]. All the 

music examples in this paper have been extracted from this piece.  
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instance, the first 3 groups (measure 1, 2, and 3 respectively) present rhythmic  
similarity; group 5, 6, and 7 (in measures 5, 6, 7, and 8) have a similar melodic  
behaviour. Of course, other segmentations could be realized, by using different  
criteria for grouping structure identification. 

It’s worth to note that our concept of grouping structure can embrace also vertical 
slices of a music piece, which allows harmonic analysis and the segmentation of a 
piece in episodes.   

In the simple example shown in Fig. 1, we considered only a small portion of a 
voice. Of course, the identification of grouping structures should be extended to the 
whole piece or even to a set of pieces that constitute an overall music work (e.g. the 
movements of a sonata or the episodes of a symphonic poem). According to our pre-
vious definitions, the analytical process for a music work can be thought – in general 
terms – as the identification of grouping structures together with their relationships 
inside the piece. Intentionally, this statement is quite vague. In fact, our purpose is 
specializing such definition in a number of different ways (creating different degrees 
of abstraction in music analysis) in order to demonstrate the adequacy of Petri Nets to 
the different cases. 

From the musicologist’s perspective, identifying grouping structures is the first 
step to establish relationships among them, highlighting similarities and differences. 
For instance, the music form known as sonata is characterized by the presence of two 
contrasting themes (the principal and the secondary theme), that are reproposed in a 
literal or slightly varied form during the piece, according to given rules and to the in-
spiration of the composer. After identifying those grouping structures, it is possible to 
show the alternations and recurrences of themes and other transition music objects: in 
other words, the analysis focuses also the relationships among music objects. 

The analytical process can be conducted at different degrees of abstraction,  
addressing movements in a complex composition, macro-episodes in a piece, 
themes in an episode or even atomic music events in an elementary music object. In 
this work we will show how music structures can be highlighted and also processed 
by means of a more abstract kind of representation than the staff one. Petri Nets, a 
formalism that will be soon described, are able to represent effectively the results of 
music analysis depending on the degree of abstraction we want to introduce in the 
process. 

3   An Introduction to Petri Nets 

A Petri Net (PN) is an abstract and formal model to represent the dynamic behaviour 
of a system with asynchronous and concurrent activities ([4], [9], [10]). 

PNs consist in a set of basic objects: places, transitions and arcs, whose graphical 
representations are circles, rectangles, and oriented lines respectively. Places and tran-
sitions are also called nodes. 

In Fig. 2, an example of an elementary PN is shown. P1, P2, P3, P4 are places, T1, 
T2, T3 are transitions, and the oriented lines represent arcs. The number associated to 
arcs is called arc weight.  
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Fig. 2. An example of Petri Net 

When building a PN, some constraints about elements layout must be respected. 
An arc can connect only nodes of different kind, i.e. a place to a transition or a transi-
tion to a place. However, two or more arcs having the same orientation can connect 
two nodes. From a graphical point of view, such a behavior can be summarized using 
the concept of arc weight, which represents the multiplicity of the arc. 

A key concept of PNs is the idea of marking, realized using tokens. Any place can 
hold a certain number of tokens, usually represented by little black circles; however, 
in a computer-oriented description, a better formalism is adopted: a numerical value 
inside the place indicates the total number of tokens in that place at a given time. This 
is the meaning of the value inside the places in Fig. 2. 

Tokens let PNs evolve and self-modify. They can be transferred from place to 
place according to policies known as firing rules. The dynamic evolution of a PN is 
determined by the following rules: 

• When all the incoming places of a transition present a number of tokens greater  
or equal to the weights of the corresponding incoming arcs, the transition is  
enabled. 

• When a transition is enabled, the fire drops from the incoming places a number of 
tokens equal to the weights of the incoming arcs and adds to each outgoing place a 
number of tokens equal to the weights of the corresponding outgoing arc. 

Fig. 3. Evolution of a Petri Net 
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Fig. 4. Alternative transitions 

 When a transition is enabled, its fire is 
not automatic. For instance, looking at Fig. 4, 
T1 and T2 are both enabled, but there is only 
one token in input, so they both cannot fire. 
In such a case, we call them alternative tran-
sitions, and only one of the two transitions 
will fire. This is a kind of non-determinism.  

A net execution is formed by subsequent transition fires, and terminates when no 
more transitions are enabled. 

3.1   Extensions 

In order to use PNs as an effective tool to describe music, we have to define further 
extensions to the given definition. Not all the extensions presented here are original: 
many of them are already in use in PNs general applications. 

Capacity. The capacity is a property of places, and indicates the maximum number of 
housed tokens. This attribute creates a new condition for transition enabling: a transi-
tion cannot be enabled if the marking of at least one output place would become 
greater than its capacity after the fire of the transition.  

The introduction of the capacity concept adds a new type of non-determinism (see 
also Fig. 4), called conflict. A conflict occurs when two (or more) transitions are en-
abled, but the fire of one transition prevents the fire of the other one(s), according to 
their capacities (see Fig. 5). 

In our graphical representations, the upper value inside a place represents its pre-
sent marking (number of tokens), whereas the lower one indicates its capacity. 

 

Fig. 5. An example of conflict 

Refinement. The theory of morphisms is complex, and this is not the place for an ex-
haustive treatment. However, we introduce the concept of refinement, a simple mor-
phism used to describe complex PNs in terms of simpler ones, in a hierarchical way. 
A refinement, called subnet in this context, represents an entire PN that replaces a 
node. For instance, in Fig. 6, the place P2 subtends the PN on the right; the expansion 
of such node would generate the lower global PN. A subnet must have an input node 
and an output node of the same type of the refined node. 

Temporization. As stated above, PNs are a good way to describe concurrent proc-
esses together with their synchronization. From a temporal perspective, when a transi-
tion is enabled, the duration of the fire is supposed to be null, so a PN execution can 
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Fig. 6. Refinements and subnets 

be considered instantaneous. In Music PNs, we will necessarily introduce the concept 
of temporization, as music processes are temporized and music objects present a tem-
poral dimension. 

Probabilistic Weight. In order to face conflicting or alternative situations, we have to 
introduce another extension: the probabilistic weight of arcs. When many transitions 
are enabled, the choice depends on the probabilistic weight of the arcs involved, in re-
lation with the total sum of their weights.  

For example, let us consider a PN with 3 arcs: A1 (probabilistic weight W1 = 5),  
A2 (W2 = 10), and A3 (W3 = 300). If at a given time t1 the choice is between all the 
three arcs, A1 shall have a probability of 5/315 (1.6%) to fire, A2 a probability of 
10/315 (3.2%), and A3 a probability of 300/315 (95.2%). At the time t2 > t1, let only 
A1 and A2 be enabled: their new probabilities will be 5/15 (33.3%) and 10/15 (66.7%) 
respectively. 

A particular situation occurs when an arc has a probabilistic weight equal to 0. In 
this case, the associated transition will fire only if there are no other alternative or 
conflicting arcs with greater probabilistic weight. 

Probabilistic weight will be graphically represented by a numeric value over the 
arc, in square brackets. 
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3.2   Music PNs 

In Music PNs, we can associate music objects to places. According to the definition in 
[2], a music object may be anything that could have a music meaning and that could 
be thought as an entity, either simple or complex, either abstract or detailed. Such en-
tity will present some relationship with other music objects. When a place containing 
an object receives a token, the music object is executed. Fig. 7 shows two simple mu-
sic objects that will be helpful to understand the following examples about transitions’ 
behavior. 

 

 
MO1 (Music Object 1) 

 
 

MO2 (Music Object 2) 

 

Fig. 7. Two music objects: MO1 and MO2 

Transitions play an important role: they determine – together with tokens – the 
evolution of the net. In our extension of PNs, namely Music Petri Nets, two categories 
can be found: transitions with and without associated music operators. We can con-
sider the latter category as transitions having a null operator associated. 

When there is no music operator associated, transitions present a simpler behavior: 
they are only devoted to net evolution. Their role is dropping tokens from input places 
and adding them accordingly to output places. As noted before, when a token arrives 
at a place, if the place has an associated music object, this object is played. In Music 
PNs, the temporization is performed accordingly to the durations of the music objects 
(eventually) associated to the places. When a place receives a token from an incoming 
transition, the (eventually) associated music fragment is executed, and the token can-
not be used until such execution is completed. 

An example is provided in Fig. 8, where MO1 is associated to the left place and 
MO2 is associated to the right one. The first measure comes from the execution of 
MO1, which took place when the token arrived at the left place. Then, the token is 
moved to the right place, originating the subsequent execution of the second measure. 
The overall result is noted in the score. 

 

  

Fig. 8. The sequence structure 
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Even by using transitions without music operators, it is possible to create peculiar 
structures. Fig. 9 provides five simple nets in order to illustrate respectively a fusion 
(two objects generating one object), a split (an object generating two objects), an  
alternative (a non-deterministic choice between two objects), and a joint structure  
(a logical connection between two objects). 
 

 
Fusion 

 

 
Split  

 
Alternative 

 

 
Joint  

Fig. 9. Some PN structures and the corresponding executions 

In the aforementioned approach, we said that transitions might have also an associ-
ated music operator. The purpose of music operators is providing changes to input ob-
jects (i.e. objects coming from input places), and passing the transformed objects to 
output places. Typical operators associated to transitions reflect common music op-
erators, such as inversion, retrogradation, and transposition. The behavior of the last 
operator is shown in Fig. 10. 
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Fig. 10. Music Object 3 before (left) and after (right) the transposition 

4   PN-Oriented Analysis and Grouping Structures 

The main questions this paper wants to answer are the following: Are PNs a good 
formalism to collect the results coming from an analytical process, at various levels of 
detail and abstraction? And are PNs a valid tool to provide a new way to read music 
structures and to create relationships among music objects? These questions were par-
tially answered by previous works and papers, such as [2]. 

Apparently, the applications of Petri Nets to music analysis lead to contradictory 
results. If [3] demonstrates a great efficacy in describing the structure of Ravel’s  
Bolero through Petri Nets, on the other hand [1] points out some limitations of this 
approach, on the base of opportune counterexamples. 

An accurate choice of the piece to be analyzed could generate excellent results: this 
is the case of music works constituted by a few music objects or having a very simple 
structure. For instance, the music form known as canon, based on the (almost) slavish 
repetition of the same music objects in different voices at different instants, can be 
represented in a very compact way by using Petri Nets. Provided that music objects 
are suitably identified, most counterpoint production (including baroque and serial 
music) originates very compact PN-based descriptions. Another field of application is 
music with a very simple structure, such as pop songs or deliberately trivial pieces. 
Ravel’s Bolero belongs to the latter category: its structure is intentionally simple and 
repetitive. Probably it would be very difficult to describe a romantic piece or a jazz 
improvisation by Petri Nets. 

In our opinion, PNs can be more or less appropriate to provide a readable and 
compact description of analysis results depending on the level of detail the analysis 
wants to reach. This statement justifies the contradictory results obtained within the 
same research group at LIM when considering different music pieces. 

Thus, Petri Nets are more or less efficient and effective depending on the possi-
bility to identify a few music objects and simple relationships among them. Accord-
ing to the aforementioned definition of music object, this concept can embrace 
whole episodes of a music work as well as single atomic events. As noted before, 
the identification of music objects is strictly related to the grouping structures we 
chose for analysis.  

Next section will take into consideration the first movement of a sonata by  
W.A. Mozart. Intentionally, this case study takes an intermediate place between a 
strongly structured piece and a completely unstructured one: the score can not be de-
scribed as a sequence of few repetitive music objects (like a canon or fugue), however 
musicologists agree about the presence of characteristic grouping structures (principal 
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theme, secondary theme, middle themes) and about its macroscopic segmentation 
(exposition, development, repeat, and coda). This case study will constitute a serious 
benchmark for Petri Nets application in music analysis. 

5   A Case Study: 1st Movement of a Sonata by W.A. Mozart 

On the base of E. Surian’s text [11], we have analyzed the 1st movement of piano  
Sonata KV 332 by W.A. Mozart. The purpose of our analysis is the application of PNs 
to the structure of the music piece, at different degrees of abstraction. 

A typical sonata-form movement consists of a two-part tonal structure, articulated 
in three main sections [7]. In this piece, the optional introduction and coda are not 
present. 

The first section, called exposition, divides into a “first group” in the tonic and, af-
ter transitional material, a “second group” in another key. The piece we considered is 
in major key, so the second group - according sonata form’s rules - is presented in the 
dominant degree. Both groups may include (and in this case actually include) a num-
ber of different themes. The first group of themes includes the principal one, namely 
the main theme; the second group of themes introduces the secondary theme, together 
with other thematic material.  

The second part of sonata structure is represented by the development, which 
elaborates material from the exposition in a variety of ways, moving through a num-
ber of keys. It also prepares the return to the main theme and to the tonic key which 
begins the following part.  

Finally, the third section is named recapitulation, and restates the themes of the 
exposition, usually in the same order. The second group is now heard in the tonic.  

Interesting differences occur in the transitional measures, namely the part between 
the first and the second group of themes: in fact, in the exposition the two groups are 
in the tonic and in the dominant degree respectively, whereas in the recapitulation 
they both are in the tonic degree.  

 

Fig. 11. A high-level representation of sonata form 

The aforementioned structure is shown through PNs in Fig. 11. The three  
music objects that come into play are: Exposition (meas. 1-93), Development (meas. 
94-132), and Recapitulation (meas. 133-229). This first example originates a very 
simple Petri Net, which is a trivial sequence of three steps. The description is very 
compact and clear from a graphical point of view, but it conveys poor musicological 
information. Besides, intrinsic characteristics of Music PNs (such as parallelism) are 
not exploited. The example in Fig. 11 will be taken up later, after showing how 
recapitulation can be derived from exposition, and will originate a more interesting 
net. 
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Key:

First Group (FG)          Transition (T)
main theme, first theme in FG (1FG)     1T    2T
second theme in FG (2FG)       3T    4T

              5T    6T 
7T  
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Key: 
 

Second Group (SG)              Close Group (CG) 
secondary theme, first theme in SG (1SG)         first theme in CG (1CG) 
second theme in SG (2SG)             second theme in CG (2CG)  
third theme in SG (3SG)  



 Music Analysis and Modeling Through Petri Nets 213 

 

At a lower degree of abstraction, we now provide a closer look at the inner struc-
ture of the exposition. In Fig. 12, the exposition follows the upper branch of the net, 
whereas the lower one represents thematic transformations applied in the recapitula-
tion. As noted before, in sonata exposition there is a first group of themes (1FG and 
2FG are the first and the second theme of the group, respectively), then a transitional 
segment (T(1) and T(2)), and finally a second group of themes (SG), followed by a 
close group (CG). The lower branch shows the evolution of the same thematic mate-
rial in the context of recapitulation. In this case, our PN illustrates in a clear and com-
pact way the similarities between sections of a sonata. We notice that: 

• 1FG and 2FG recur in both sections, without variations. 
• The transitional material is slightly different, and those dissimilarities will be 

further investigated. 
• Finally, SG and CG are identical in the exposition and in the recapitulation, but, 

in the second case, they undergo a transposition. In order to apply this operator 
to the music object only in the recapitulation, we first have to load it (Load 
SG/CG place) and then to execute it, with or without transposition (Exec 
SG/CG place). 

The grouping structures we are using refer to smaller blocks of measures, coming 
from the analytical process of segmentation proposed in [11]. This process has identi-
fied the main theme, the secondary theme and other themes from first, second, and 
closing groups. 

In order to make the reading of Music PNs easier, in Figure 12 and following 
places with an associated music object are gray colored, whereas places without an 
associated music object (as either inherit a transformed music object from the preced-
ing places or simply make PN evolve without musical consequences) present a white 
background color. 

    

 

Fig. 12. (a) Themes evolution in Exposition and Recapitulation; (b) SG/CG subnet 

Thanks to the aforementioned considerations, now we can revise Fig. 11 in order  
to synthesize Recapitulation’s dependency from Exposition. The result is shown in 
Fig. 13, where high-level structural representation is even more compact. 

(b) 

(a) 
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Fig. 13. A revised representation of sonata form 

Finally, we take into consideration what happens in the transition between the first 
and the second group of themes. In the exposition and in the recapitulation a different 
behavior will occur, as tonal relationships between the first and the second group of 
themes change (passing from tonic-dominant to tonic-tonic). 

The complete example, shown in Fig. 14, illustrates the expressive power of PN 
formalism. The choice of music objects to consider reflects only one of many  
alternatives: our goal here was keeping graphic complexity low, showing – never-
theless – a number of relationships among original music materials. Of course, 
other grouping structures are conceivable, and they would embrace other properties 
and relationships of music material. For instance, we identified 1T and 2T as differ-
ent objects, because they are treated in a slightly different way in exposition and in 
recapitulation sections, and not for musicological reasons. Likewise, within 1T the 
rhythmic and melodic figures played by the left hand at measure 23 and 24 are very 
similar, but this relationship was intentionally ignored in order to design a more 
compact Music PN. At a lower degree of abstraction, it is worth noting that many 
other relationships can be caught; unfortunately, this would imply a more complex 
(and less readable) Petri Net. 

Fig. 14(a) illustrates music evolution in the first occurrence of transition, i.e. the 
transition segment within exposition. After 6 measures (1T and 2T), we had to split 
music score in two parts, denoted by suffix rh (standing for right hand) and lh (for left 
hand) respectively. Concerning 3T, it is considered a single music object within expo-
sition, while it is managed as two separated parts during recapitulation section.  

The splitting mechanism previously introduced is very effective when applied to 
4T, 5T and 6T: in fact, it lets us describe measures 31-36 as the transformation of the 
same elementary music material. We underline that – over the two branches – a music 
object is associated only to 4Trh and to 4Tlh (grey places), whereas the subsequent 
white-colored places inherit music objects from the preceding ones. Of course, transi-
tions operate some changes: concerning right hand, music material undergoes a num-
ber of pitch substitutions (e.g., passing from 3Trh to 4Trh, G becomes Ab); for the left 
part, the minimal grouping structure is made of only one measure, always literally  
repeated twice. In our models, the transitions that have an associated algorithm are 
grey-colored. In this case, the musical operators associated to transitions are: diatonic 
transposition Diat(Ab-3), two degrees (i.e. a third) down along Ab major scale, and 
complement Compl(-2) to obtain the second inverted chord. After 6T, the evolution of 
Music PNs brings to converge at 7T. 
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Subnet for Fig. 14(b) 

  

 

Fig. 14. (a) Transition from Exposition; (b) Transition from Recapitulation 

In Figure 14 we provide two distinct models (a and b respectively) to illustrate  
how transition evolves in exposition and in recapitulation. However, the two parts of 
Figure 14 are not independent: the original material is the same in both cases, as indi-
cated by the place names. 1T remains unchanged, whereas many other music objects 
undergo a transposition from the dominant degree to the tonic degree. The harmonic 
grid cannot be the same in both cases, and this consideration emerges clearly looking 
at the different music operators associated to PN transitions in Figure 14(a) and (b). 
Together with Compl and Diat operators, already introduced for Figure 14(a), in the 
subnet related to Figure 14(b) we find a Chrom(-2M) operator, that transposes all the 
corresponding intervals a major second below. 

A single PN describing the two occurrences could be created, as we did in  
Figure 12, but the result would be less readable. 

(b) 

(a) 
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In order to appreciate the operation of PN transitions, the following example  
(Figure 15) relates a significant part of Figure 14(b) to the corresponding measures in 
the recapitulation. 
 

 
 
 4T’rh 5T’rh 6T’rh  
 
 
 
 
 
 
 
 

 

 
 4T’lh 5T’lh 6T’lh 

Fig. 15. Operations performed by PN transitions 

6   Formats to Collect PN-Oriented Analysis Results 

The Petri Net Markup Language (PNML) is a proposal of an XML-based interchange 
format for Petri Nets. The standardization effort originated the working draft of 
ISO/IEC 15909-2 for a Transfer Format for High-level Petri Nets. At present, the 
PNML format is supported by several PNs tools, which facilitates the exchange of PN 
models. The goal of this format is the possibility to add new extended PNs types, 
maintaining a set of basic features. This allows, for example, the export of a PN 
model to another tool that, adopting the PNML format, simply ignores the unsup-
ported features without losing all information. 

The PN design tool we have used, namely ScoreSynth (see next section), adopts a 
PNML-based approach to save and load PN models. In ScoreSynth we have devel-
oped an extension to PNML basic PNs types to incorporate all the extensions we have 
to use for Music PNs. 

In order to collect the results coming from a PN-oriented analysis, our purpose is to 
encode both music symbolic information and the corresponding structural information 
in a unique data structure. XML provides an effective way to represent musical  
information at different levels of abstraction. Thanks to the file format we are devel-
oping at LIM2, namely MX, it is possible to represent notational symbols as well as 
                                                           
2  Laboratorio di Informatica Musicale, Dipartimento di Informatica e Comunicazione, 

Università degli Studi di Milano. 
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music objects and related structures. MX is an XML-based format that describes  
music information according to a multi-layer structure, where each layer is specific to 
a different degree of abstraction in music information. As described in [5], MX is 
constituted by General, Structural, Music Logic, Notational, Performance and Audio 
layers.  

Our encoding format is particularly suitable to describe information coming from a 
manual or automatic segmentation process. Thanks to its multi-layer layout, themes 
and other musical objects (Structural layer) can easily refer to organized symbols in 
score (Music Logic layer). Besides, MX format encodes also the relationships inter-
vening among music objects. 

Another important characteristic of MX encoding is the possibility to import and/or 
support fragments from other XML-based formats, such as PNML. 

7   Related and Future Works 

The application used to design, execute and debug all the PNs involved in this paper 
is called ScoreSynth, and was developed at LIM. Since 1980, we have been using PNs 
as the basic tool for music description and processing, creating some applications to 
support our approach. In our recent work, we have switched to Windows operating 
system (Macintosh was the preceding platform), and we have developed two new ap-
plications: ScoreSynth and MediaSynth. Both are based on the same interface, which 
allows drawing, editing, and executing PNs. In ScoreSynth, the material associated to 
places is symbolic and represented in MX format, while MediaSynth is dedicated to 
multimedia processing, with media associated to places and effects associated to tran-
sitions. The PN-based analysis presented in this paper was performed and validated 
by ScoreSynth. Thus, in our implementation of a tool to design and executing Music 
PNs, the format chosen to represent music objects is MX, an XML-based encoding 
that can incorporate all levels of music representation. 

Concerning future works, an interesting idea is exploiting analysis results to write 
new music compositions. For instance, it is possible to maintain the same structural 
characteristics of the analyzed piece, but changing music objects associated to places 
and/or music operators associated to transitions. These possibilities will be further ex-
plored in the next future. 

8   Conclusions 

In our opinion, after some opportune extensions, Petri Nets can effectively represent 
the results of a musicological analysis process. This representation can be more or 
less effective, readable, and compact depending on the music objects we choose and 
on the degree of abstraction we want to reach. Music PNs work very well when ap-
plied to general structures (e.g. sonata form), provide interesting and peculiar results 
when applied to thematic segmentation (e.g. themes in a section), and finally present a 
too complex layout when atomic music objects are involved.  

Their full potentialities are exploited when a number of relationships occur in a 
music piece. PNs are very effective and efficient to describe concurrent, distributed, 
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parallel processes, and an ad hoc choice of music objects can highlight such peculiari-
ties. The application of this formal tool to music analysis can show surprising results. 
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Abstract. This paper presents some techniques for the extraction of
transient components from a musical signal. The absence of a unique
definition of what a “transient” means for signals that are by essence
non-stationary implies that a lot of methods can be used and sometimes
lead to significantly different results. We have classified some amongst the
most common methods according to the nature of their outputs. Prelim-
inary comparative results suggest that, for sharp percussive transients,
the results are roughly independent of the chosen method, but that for
slower rising attacks - e.g. for bowed string or wind instruments - the
choice of method is critical.

1 Introduction

A large number of recent signal processing techniques require a separate process-
ing on two constitutive components of the signals : its “transients” and its
“steady-state”. This is particularly true for audio signals, by which we mean
primarily music but also speech and some environmental sounds. Amongst all
applications, let us mention : adaptive audio effects (enhancement of attacks
[1], time-stretching[2], . . . ), parametric audio coding [3] (the transients and the
steady-state are encoded separately), audio information retrieval (transients con-
tains most of the rythmic information, as well as specific properties for timbre
identification). Furthermore, transients are known to play an important role
in the perception of music, and there is a need to define perceptually-relevant
analysis parameters that characterize the transients.

However, there is a plethora of methods for the Transient / Steady-State
(TSS) separation, with little indication of their relative merits. This arises from
the fact that there is no clear and unambiguous definition of what a “transient”
is, not what “steady-state” means for musical signals that are by essence non-
stationary. In mathematical terms, this is an ill-posed problem, that can only
lead to some tradeoffs. Indeed, we shall see that every definition leads to a
specific decomposition scheme, and therefore different results in the separated
TSS components. The goal of this paper is to make a review of some commonly
used techniques, together with comparative results. Some of these methods are
recent developments, but others, that are well described in the literature, are
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mentioned here for the sake of completeness. Although we do not claim any
sort of exhaustivity, we hope that we have covered the most important ones
that have been successfully used for music. Obviously, a lot of other techniques
could be used, that are not described in this article, since they were developed
for other classes of signals (e.g. transient detection in duct flows, in underwater
acoustics, in engine sounds). Our choice is to focus on musical signals, with a
special emphasis on methods where the author had some hands-on experience,
and where the computational complexity is reasonable so that they could be
realistically applied to real full-band audio signals.

At this point, we should make it clear that the problem of TSS separation is
related to, but distinct from, other classical musical signal processing tasks that
are the classification of segments into transients or steady-state (for instance the
way it is done in subband audio codecs such as MPEG 1 layer III, for the decision
between the long and short window mode), or the binary TSS segmentation in
time. On the contrary, all methods suggested here assume an additive model for
the sounds, where transients and steady-state can in general exist simultaneously.
TSS separation is also different from the problem of note onset detection [4],
although it is clear that they share common methods.

The different methods can be grouped into 3 classes (even though this clas-
sification is certainly not unique), depending on the structure of their outputs
(see table 1).

The fist class of methods, amongst the simplest in their principle, are based
on linear prediction (section 2). They provide a decomposition of the sound into
its excitation signal and a resonating filter. If the filter has been well estimated,
most of the energy of the excitation signal is located at attack transients of
signals.

The second class of methods (section 3) do not define transients directly, but
rather extract from the signal its “tonal” part (also called sinusoidal part). If
this extraction is successfully applied, the residual signal exhibits, as in the linear
predictions methods above, large bursts of energy at attack transients. It also
contains some slowly-varying stochastic residual.

Finally, the last class of signals (section 4) assume some explicit model for
the transients, and the output of the model is 3 signals, that can be summed
to reconstruct the original : one for the Sinusoidal part, one for the transients,
one for the Residual (these models are often called STN models, for Sines +
Transients + Noise).

Table 1. Different transient extraction methods can be classified according to their
outputs. For each class of methods, the signal related to the transients is highlighted.

Method Outputs Section
Linear prediction Resonance filter coefficients Excitation signal 2
Tonal extraction Tonal signal Non-tonal signal 3

STN models Tonal signal Transients signal Noise signal 4
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Some results are presented in section 5, where some of the above approaches
are compared on test signals. A tentative guide for the choice of a method most
suitable for the problem at hand is finally presented, based on their pros and
cons, that have to be balanced with computational complexity. The last section
of this article (section 6) presents conclusions and future directions for research.

2 Methods Based on Linear Prediction

In this class of methods, the distinction between transient and steady-state is
related to the notion of predictability. A steady-state portion of the signal is one
where any part of this segment can be accurately predicted as soon as some
small sub-sequence (the training sequence) is known.

Linear prediction in the time domain is a widely-used technique, since it is
typically the core of most speech coding technologies. An the simplest auto-
regressive (AR) case, the underlying idea is to consider the sound as the result
of the convolution between an excitation signal and an all-pole filter. The Yule-
Walker equations allow the estimation of the best order-P filter, that minimizes
the energy of the prediction error. Once the filter is estimated, the excitation
signal is simply the result of the filtering of the signal by the inverse filter (which
only has zeros and therefore is stable). For steady-state parts of the sounds, the
excitation signal can usually be simply modeled, for instance as an impulse train
for voiced phonemes. More generally, this excitation signal will have a small
local energy when the signal is highly predictable (steady-state portions), but
energetic peaks when the audio signal is poorly modeled by the AR model. This
typically corresponds to non-predictible situation, such as attack transients (or
decay transients e.g. in case of a damper).

The obtained decompositions has a physical interpretation for source - filter
models : when the excitation has a flat frequency response (impulse or whte
noise), the AR filter is a good estimate of the instrument’s filter. In the more
general case when the excitation does not have a flat spectrum, it nevertheless
provides a qualitative description of temporal and spectral properties of the
sound, even though the physical interpretation is strictly lost.

Usually, this method gives good results when the signals are the result of some
(non-stationary) excitation, filtered and amplified by a resonator. However, it has
strong limitations : first, the order estimation (order of the filter) has to be known
or estimated beforehand, which can be a hard task. Second, the estimation of
the resonant filter will only be successful only if the training sequence does not
contain a large portion of transients, and this makes the estimation on successive
notes sometimes not reliable. However, this method is very well documented and
easy to use in high-level DSP environments such as Matlab, and can be quite
accurate on isolated notes.

Further extensions can be designed, for instance with auto-regressive with
moving average (ARMA) models, but in this case the complexity is increased,
both for the parameter estimation and for the inverse filtering that recovers the
excitation signal.
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3 Methods Based on the Extraction of the Tonal Content

In this class of methods, as in the linear prediction methods above, there is no
explicit model for the transients. The goal here is to remove from the signal its
so-called “tonal” or “sinusoidal” components. The residual is then assumed to
contain mostly transients.

3.1 Segmentation of the Short-Time Fourier Transform

A natural way of expanding the above extraction methods is by using time-
frequency analysis. The simplest implementation is the Short Time Fourier
Transform (STFT), which provides a regularly-spaced local frequency analy-
sis. Now, within each frequency subband, it is possible to perform the prediction
search within each frequency band. The simplest model is based on the so-called
“phase vocoder” [5], originally designed to encode speech signals. For the task of
TSS separation, each time-frequency discrete bin will be labelled as ”transient”
(T) or ”steady-state” (SS), and the underlying assumption is that we can ne-
glect the influence of time-frequency bins that have a significant contribution in
both domains. Note that we keep the terminology “steady-state” employed in
the original papers, although the word “tonal” would be here more appropriate.
After labeling, each signal, transient or steady-state, is reconstructed using only
the corresponding time-frequency bins.

The simplest criteria for the identification of tonal bins is based on phase
prediction in a given frequency bin k [5]. On steady-state portions of the sound,
the (unwrapped) phase φn (n stands for the index of the time window) evolves
linearly over time (hence the definition of instantaneous frequency as time deriv-
ative of the phase). Now, one looks at predicting the value of the phase φn in
the current window, knowing its past values. A first-order predictor gives :

φpred
n = 2φn−1 − φn−2 (1)

Now, φpred
n is compared to the measured φn, and the labeling is based on the

discrepancy between these two values :

Time-frequency bin (k, n) of type
{

SS if |φpred
n − φn| < ε

T otherwise (2)

where ε is a small constant that defines the tolerance in prediction error, for
instance due to slight frequency changes, and it has to be adapted to the analysis
hop size (number of samples between two analysis windows). Obviously, this
method can be seen as an extension of the linear prediction methods (section 2),
as here a -basic- predictor is applied in every frequency bin.

More recently, this method has been refined in a few directions. It has been
shown [2] that the results are significantly improved when processing the results
in different subbands (with increasing time resolution at high frequencies), as
well as by using an adaptive threshold for ε in equation 2. For onset detection
purposes, the method has been further extended by using a complex-valued



A Review on Techniques for the Extraction of Transients 223

difference [6] that not only takes the phase difference into account, but also the
magnitude (attack onsets are usually characterized by large jumps in amplitude).
Finally, a magnitude-based modeling in [7] tries to fit a triangular shape at
transients for a given STFT frequency bin.

3.2 Methods Based on Parametric Representations: Sinusoidal
Models and Refinements

Parametric representations assume a model for the signal, and the goal of the
decompositions is to find the set of parameters that allow, at least approximately,
to resynthesize the signal according to the model. For speech / music signals, it is
natural to assume that the signals are mostly composed of tonal -i.e. sinusoidal-
components, and here transients are defined as part of the non-tonal residual.

The simplest of this model was originally proposed by McAulay-Quatieri [8]
for speech signals, where the sound is seen as a linear combination of a (relatively
small) number J of sinusoids :

x(t) ≈
J∑

j=1

Aj(t) sin (ϕj(t)) (3)

where ϕj(t) =
∫ t

0 ωj(τ)dτ + ϕj(0) represents the phase of the j-th partial. The
parameters (Aj , ωj , ϕj) for each partial sinusoid are assumed to evolve slowly
over time, hence their values only have to be estimated frame-by-frame.

When applied to music signals, the residual contains all the components that
do not fit into the model : stochastic components, or fast-varying transients.
For general music processing purposes, this model has been refined to take into
account the stochastic nature of the residual (Spectral Modeling Synthesis or
SMS [9]). More recently, the analysis of this residual has been embedded in a
statistical framework [10] that allows transients detection and modelling.

3.3 Methods Based on Subspace Projection

High resolution methods allow a precise estimation of exponentially damped
sinusoidal components in complex signals. As in the linear prediction case, this
model is physically motivated since exponentially-damped vibrations are the
natural free response of oscillatory systems. The model is as follows :

x(t) =
K∑

j=1

Ajz
t
j + n(t) (4)

where Aj is a complex amplitude, zj = eδj+i2πfj is a complex pole that represents
both the oscillation at frequency fj but also the damping through the δj term,
and n(t) is a noise term that is assumed white and gaussian. The principle of
high resolution techniques is to estimate the values of all zj through numerical
optimization techniques. The obtained resolution is typically much higher than
in the simple Fourier case. Specific methods have been proposed, that offer a
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better robustness to noise than the standard Pisarenko or Prony estimations
methods. In particular, ESPRIT [11] and MUSIC [12] reduce this task to an
eigenvector problem. When the number K of components is known, the span of
the K obtained eigenvectors is called the “signal space”, its complement is called
the “noise space”. Projecting the signal onto these 2 subspaces provides a natural
decomposition of the signal into its tonal and non-tonal components. YAST
[13], a recent variant of these methods for time-varying systems, is particularly
suitable for music signals since it allows a fast processing of large-size signals.
Note that the white noise hypothesis is generally not verified, in which case
the processing has to be performed in separate subbands. Also, the number of
components has to be known or estimated, and therefore the best estimates are
obtained on isolated notes, where the number of components does not change
over time.

4 Sines + Transients + Noise Models

Three-components decompositions of the sounds have become very popular in
audio coding, especially in the framework of MPEG-4. The aim is to decompose
the file into three additive components, the tonal or sinusoidal component, the
transients, and a slowly-varying wide-band stochastic component called “noise”.
The extraction can be done sequentially, first by a tonal component extraction
as in section 3, and then by a transient processing on the non-tonal part. Alter-
natively, the separation can be done simultaneously, which usually gives better
results but requires more computational power.

4.1 Sequential Estimation of Tones with Hybrid Dictionaries

In this TNS framework, the simplest method for TSS is to estimate each com-
ponent at a time, first transient and then steady-state, or vice-versa. This is
the basis for hybrid methods, that make use of two different orthogonal trans-
forms. In the Transient Modeling Synthesis (TMS) scheme [3], the tonal part
is first extracted by taking the large coefficients of a Modified Discrete Co-
sine Transform (MDCT). In a dual way, transients are analyzed in a pseudo-
time domain constructed by taking the Fourier transform of the discrete cosine
coefficients.

In [14], the tonal part is first estimated using the largest Modified Discrete Co-
sine Transform (MDCT) coefficients of the signal. Transients are then estimated
by the largest Discrete Wavelet Transform (DWT) coefficients of the signal.

These methods are very simple, but suffer from two drawbacks: first, each
component (T or SS) biases the estimate of the other component ; and second,
at each stage the choice of the threshold between large “significant” coefficients,
and small “residual” coefficients is difficult. Although they may provide satisfac-
tory results in some simple cases, the above limitations call for a simultaneous
estimation of both TSS components, which is the topic of the next sections.
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4.2 Simultaneous Estimation by Adaptive Time-Frequency
Resolution

With adaptive time-frequency analysis, it is possible to obtain estimation of
different components. the idea is to adapt locally the resolution of the transform
to the signal. The choice of the resolution is based on some sparsity measure,
for instance Shannon-like entropy measures. A simple version of this is the Best
orthogonal Basis algorithm [15], where a multiresolution transform that has a
tree-like structures (for instance, wavelet packets) adapts locally its resolution
in time or frequency.

More recently, this idea has been extended and applied to music TSS sepa-
ration, through “Time-frequency jigsaw puzzles” [16]. Here, this adaption step
is made even more locally, in so-called super-tiles of the time-frequency plane.
The algorithm is run iteratively until some convergence is reached. At every
iteration, the algorithm finds, in each super-tile, the optimal resolution, trans-
forms the signal accordingly, and subtracts the largest coefficients. As in many
methods above, the choice of the threshold that governs, for a set of transform
coefficients at a given resolution, what is “significant” and what is not is a critical
point based mostly on empirical evidence.

4.3 Simultaneous Estimation by Sparse Overcomplete Methods

The goal of sparse overcomplete methods is to decopose the signal x as a linear
combination of fixed elementary waves, called “atoms” :

x =
∑

k

αkϕk , (5)

where αk are scalars, and ϕk are the atoms drawn from a dictionary D. In finite
dimension, the dictionary D is said overcomplete when it spans the entire space
and has more elements than the dimension N of the space. In this case, there
is an infinity of decompositions of the form (5), and one would like to find one
that is sufficiently sparse, in the sense that a small number K � N of atoms
provide a good approximation of the signal :

x ≈
K∑

j=1

αkj ϕkj , (6)

If the dictionary is composed of two classes of atoms D = S ∪ T , where
S = {gi} is used to represent the tonal components of the sound (for instance
long-window Gabor or Modified Discrete Cosine Transform atoms), and T =
{wi} is used to represent the transient part of the sound (for instance short-
windows Gabor atoms, or wavelet atoms), a sparse approximation of the signal
will provide a natural separation between transients and tones. In this case,
the noise is simply the approximation error, due to components that do not
belong to either class, and the tonal layer (resp. the transient layer) is the partial
reconstruction in the signal using only atoms in S (resp. atoms in T ).



226 L. Daudet

However, for general overcomplete dictionaries, finding a good sparse approx-
imation is a non-trivial task, and indeed it has been shown that finding the op-
timal K-terms approximation of the signal x is a NP-hard problem [17]. Many
recent signal processing techniques have emerged recently (Basis Pursuit, Match-
ing Pursuit, FOCUSS, . . . ), and we will here only a few of them that have been
specifically applied to the TSS problem.

Matching Pursuit and Extensions. The Matching Pursuit [18] is an it-
erative method that selects one atom at a time. At every iteration, it selects
the “best” atom ϕk0 , i.e. the one that is the most strongly correlated with the
signal: k0 = arg maxk |〈x, ϕk〉|. The corresponding weighted atom is then sub-
tracted from the signal x ← x − 〈x, ϕk0 〉ϕk0 and the algorithm is iterated until
some stopping criteria is reached (e.g. on the energy of the residual). This al-
gorithm is suboptimal in the sense that, although it chooses at every iteration
the atom that minimizes the residual energy, there is in general no guarantee
that the set of selected atoms provide the best sparse approximation of the
form (6). However, Matching Pursuit has become quite popular, mainly due
to its simplicity, but also because experimental practice shows that in most
cases the obtained decompositions are close to optimal (at least for the first few
iterates).

For the sake of TSS separation, this algorithm has been extended into the
Molecular Matching Pursuit [19], that at every iteration selects a whole group
of neighboring atoms, called “molecule”. The dictionary D is, as in the above
hybrid model, the union of a MDCT basis (for tones) and a DWT basis (for
transients), and a molecule is only composed of one type of atoms. Besides a re-
duced computational complexity, selecting molecules improves significantly the
TSS separation over the original matching pursuit: first, it prevents isolated large
atoms to be tagged as significant ; and second, it forces low-frequency large-scale
components, that by themselves could equally go into transients or tones, into
only one of these components according to the local context.

Global Optimization Techniques. When the above results are not satisfac-
tory, it may be desirable to use algorithms that choose a globally optimal or
near-optimal solution, for a given optimality criteria. The problem can usually
be written as a minimization problem:

u = arg min
u

||x − Φu||22 + λ‖u‖p
p (7)

where Φ is the (rectangular) matrix of our overcomplete basis, and λ is a scaling
parameter for the sparsity measure ‖u‖p

p =
∑M

k=1 |uk|p, with 0 < p ≤ 1.
The resolution of this problem typically involves very high computational

costs. Many such techniques have been proposed in the literature, such as Basis
Pursuit or FOCUSS. Amongst them, the Fast Iterated Reweighted SParsifier
(FIRSP) [20] has been successfully applied to audio TSS separation. The princi-
ple is to use the reweighted least squares algorithm for the optimization problem
(7) with p → 0 (this enforces a strong sparsity). For a practical implementa-
tion, this problem is reset in the Expectation Maximization (EM) framework.
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In general, this requires at every iteration the inversion of the matrix Φ, which
can be very costly for large matrices.

However, this algorithm is of real practical use when the dictionary is the
union of orthonormal bases, since in this case each EM iteration is replaced
by a series of Expectation Conditional Maximizations within each orthonormal
subspace, and the above matrix inversion reduces to a scalar shrinkage. Here,
the strongly reduced computational complexity makes it a realistic choice for
processing long audio segments. Further details can be found in [20, 21]. For
TSS separation, the union of 4 orthonormal bases has been used, a long-window
Modified Discrete Cosine Transform (MDCT), a long-window Modified Discrete
Sine Transform (MDST), a short-window MDCT and a short-window MDST.
After a few FIRSP iterations, the transients’ energy is mostly concentrated on
the short-windows transforms, and the SS in the long-windows transforms. Note
that other orthogonal transforms can be used, for instance discrete wavelets for
the transients ; however, preliminary results suggest that results are quite similar
on most typical test signals.

5 Comparative Results

We have compared extraction results for 3 recent methods

– the YAST high-resolution method (paragraph 3.3). The signal is processed
in 2500 Hz equal-width subbands, with 10 to 20 sinusoidal components par
subband;

– the adaptive phase-vocoder approach (paragraph 3.1), described in [2];
– the jiigsaw puzzle approach (paragraph 4.2), in the variant TFJP2 described

in [16].

Two soundfiles were tested, that have very different transient behavior: a
glockenspiel, where the attacks are very sharp (the energy rising time is of a few
ms); and a trumpet, where the energy rises on much longer time-scales (typically
50 ms, but this can extend to much higher values).

Separation results are presented in figures 1 and 2. On the glockenspiel exam-
ple (figure 1), the results are quite similar for all three methods : the transient
components exhibits sharp, high-amplitude peaks at note onsets. This is the
typical case where all the definitions roughly agree on what a transient is.

On the contrary, the trumpet example exhibits very significant differences be-
tween the two methods. The YAST algorithm provides large energy bursts at
the onset of notes, and smaller ones at their termination. The adaptive phase
vocoder tends to capture more of the subtle variations within a note (see for
instance the vibrato in the 6th note starting at about 1.5 s). Results of the
jigsaw puzzle method are more difficult to interpret: even though its energy is
well located on each onset, the amplitude of each onset transient varies somehow
unexpectedly (see for instance the difference between the two notes starting at
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Fig. 1. Glockenspiel signal: comparison of three transients extraction techniques. From
top to bottom:original signal, tonal part obtained by YAST, transients obtained by
YAST, tonal part obtained by the adaptive phase-vocoder, transients obtained by the
adaptive phase-vocoder, tonal part obtained by the jigsaw puzzles, transients obtained
by the jigsaw puzzles.

about 1s and 1.3 s). This lack of shift invariance is probably due to a particular
choice of super-tiles.

It should be emphasized that these results are only indicative of the rela-
tive merits of each method. Results are highly signal-sensitive, at there is no



A Review on Techniques for the Extraction of Transients 229

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

0 0.5 1 1.5 2 2.5 3
−1

0

1

0 0.5 1 1.5 2 2.5 3
−1

0

1

0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

0 0.5 1 1.5 2 2.5 3

−0.5

0

0.5

0 0.5 1 1.5 2 2.5 3

−0.2

0

0.2

Time (s)

Fig. 2. Trumpet signal: comparison of three transients extraction techniques. From
top to bottom: original signal, tonal part obtained by YAST, transients obtained by
YAST, tonal part obtained by the adaptive phase-vocoder, transients obtained by the
adaptive phase-vocoder, tonal part obtained by the jigsaw puzzles, transients obtained
by the jigsaw puzzles.

guarantee that the performance of one algorithm will be similar on two signals
that apparently belong to the same class. Furthermore, most of these methods
requires a precise fine-tuning of the parameters, and for some of them the results
are very sensitive to a particular choice of parameters.
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Table 2. Tentative classification of relative computational complexity (from −−: very
complex to ++: very fast), pros (P) and cons (C) for each method, as well as their
most natural field of application

Method Complexity Pros, Cons & applications
P Source-filter interpretation

Linear + C Relevant only for flat
prediction spectrum sources

→ Physical models, lossless coding
Model for sines only: transients in residual

P musically relevant
Adaptive + C redundancy

phase-vocoder → Audio effects,
Preprocessing

P Explicit signal model
Sinusoidal model +− C No model for the residual

/ SMS → Parametric coding,
Audio effects

P High precision
Subspace methods − C Often requires hand-tuning

→ Signal analysis, Preprocessing
Model for sines and transients

P Fast algorithms
STN sequential estimation ++ C Difficult interpretation

in orthonormal bases Threshold choices
→ Transform coding

STN simultaneous estimation P General method
by adapted fime-frequency +− C Threshold choices,

tiles no shift-invariance
→ Analysis, Source separation ?
P Generates sparse data

STN simultaneous estimation (and structured for MMP)
by Matching Pursuit / − C Optimality not guaranteed

Molecular MP → Parametric coding
Source separation

STN simultaneous estimation P Very general, optimality criteria
by global optimization − to −− C Potentially very slow

(BP, FIRSP, . . . ) → Analysis, Transform coding ?

However, we have tried in table 2 to summarize the main advantages and
drawbacks of every method presented above. It should be emphasized that this
comparison is only relevant within a category : linear prediction methods (de-
scribed in section 2), Tonal extraction (described in section 3) or STN models
(described in section 4). For each category, the balance between computational
complexity and relevance of the results should help us in the choice of the most
appropriate method for the problem at hand.
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6 Conclusion

This paper is a first attempt to review and classify some techniques for the
estimation of transients in music signals. Preliminary tests have been conducted;
although a systematic comparative test is yet be performed, with more methods
and more sound examples. However, a recurrent difficulty for such comparison
is the lack of a common platform for testing : one of our medium-term goals
is to develop such a software that could act as a unique front-end for some
of the numerous methods above. Eventually, the main problem for the task
of comparing many TSS techniques is that one has to define one (or more)
optimality criteria for deciding when a method is better than another. Some
transientness criteria such as described in [1, 22] may be a first step towards
relevant efficiency criteria.

One of our findings is that, unsurprisingly, the problem of TSS separation is
indeed very different according to the nature of the signal. For sharp percussive
sounds, the separation results are roughly independent of the chosen method
-the simpler the better !-, but for slower rising attacks - e.g. for bowed string or
wind instruments - the choice of method is critical. Finally, the biggest challenge
is probably to link all these techniques to some perceptually relevant features,
since numerous studies on music perception and timbre identification confirm
the utmost importance of fast-varying transients.

In the future, there is a need to develop a deeper understanding of the different
time-scales involved in human perception. Finding perceptually-relevant signal
parameters for transients is in our opinion one of the forthcoming challenges in
the musical signal processing field.
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Abstract. A 24-dimensional model for the ‘harmonic content’ of pieces
of music has proved to be remarkably robust in the retrieval of polyphonic
queries from a database of polyphonic music in the presence of quite
significant noise and errors in either query or database document. We
have further found that higher-order (1st- to 3rd-order) models tend to
work better for music retrieval than 0th-order ones owing to the richer
context they capture. However, there is a serious performance cost due
to the large size of such models and the present paper reports on some
attempts to reduce dimensionality while retaining the general robustness
of the method. We find that some simple reduced-dimensionality models,
if their parameter settings are carefully chosen, do indeed perform almost
as well as the full 24-dimensional versions. Furthermore, in terms of recall
in the top 1000 documents retrieved, we find that a 6-dimensional 2nd-
order model gives even better performance than the full model. This
represents a potential 64-times reduction in model size and search-time,
making it a suitable candidate for filtering a large database as the first
stage of a two-stage retrieval system.

1 Introduction

1.1 Harmonic Modeling

A practical system for music information retrieval (MIR) needs to be both effec-
tive and efficient. Among the reasonable criteria of effectiveness are robustness to
the errors commonly encountered in a musical context, both in queries and the
database documents, and to reasonable levels of noise; this robustness needs to
be judged against standard evaluation measures such as precision/recall curves.
Robustness to error almost always has the effect of harming overall precision
since more non-relevant documents are ‘recognised’ to be similar to the query
as higher rates of error are allowed. By using multiple searches in a gradual
process of refinement, however, we should be able retain both robustness and
precision/recall performance. This would only be possible if our searches were
highly efficient, that is, as fast as possible.
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In previous work ( [1,2,3]) we have described a system for music information
retrieval (MIR) which attempts to capture the general harmonic similarity be-
tween a musical query and the musical documents sought in a collection. Our
simplest, 0th-order model is built by estimating the relative strength of the mem-
bers of a lexicon of chords, given the observable notes in a window traversing
the music, and by consolidating the set of these partial observations (one for
each window position) into an overall harmonic signature for the piece, which,
like each of the partial observations, is a probability distribution over the lexical
chords rather than a single value. This process is applied to all files in the data-
base of music to be searched, and their signatures stored, and at search-time to
the query itself; retrieval consists of rating the divergence of the query signature
from all of those stored for files in the database. This list is sorted inversely by
the divergence, giving a ranked list by harmonic similarity.

The chord-lexicon we use is the 24 major and minor triads. In order to allow
for approximate matching between harmonic descriptions, we feel it is essential
to find a representation of the harmonic unfolding of the music whereby notes
in a query different from those in the original document lend appropriate weight
to a matching function according to their harmonic distance from it. There is no
music-theoretical way to judge the distance between all possible chords that may
arise in the course of a piece of music, but we do have such a measure for the
set of 24 triads. Krumhansl and Shepard ( [4, 5]) present a set of coordinates of
relative positions of the triads in a four-dimensional space derived directly from
the results of rigorous perceptual testing. We use the simple Euclidean distance
between the triads in this space (Krum(x, y) in Equation 1 below) as the basis
for constructing our model.

As well as the simple harmonic model described above, we use higher-order
models to capture not just the local harmonic description of each window on the
music, but also the harmonic transitions between windows. This gives rise to an
exponential growth in model size with order, which severely curtails performance
in terms of efficiency, although it adds considerable richness to the model.

1.2 Previous Work

Among previous work, that which most closely resembles ours is that by Purwins
et al [6]. The authors devised a method of estimating the similarity between two
polyphonic audio music pieces by fitting the audio signals to a vector of key
signatures using real-valued scores, averaging the score for each key fit across
the entire piece, and then comparing the averages between two documents. As
do we, these authors use Krumhansl’s distance metrics to assist in the scoring.
One of the main differences, however, is that these authors attempt to fit an
audio source to a 12-element vector of keys, while we fit a symbolic source to a
24-element vector of major and minor triads. Furthermore, by averaging their
key-fit vector across the entire piece, their representation is analogous to our 0th-
order Markov models. In our work we utilize not only 0th-order models, but 1st
and 2nd-order models as well. Moreover, the Purwins paper was not specifically
developed as a music retrieval task, and thus has no retrieval-related evaluation.
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Shmulevich et al ( [7, 8]) also use some of the same techniques presented here,
such as Krumhansl’s distance metrics and the notion of smoothing. Shmulevich’s
work is on monophonic music, but demonstrates that harmonic analysis and
probabilistic smoothing can be valuable components of a music retrieval system.
Other recent techniques which apply 1st-order Markov modeling to monophonic
note sequences include [9] and [10]. Further work extends the modeling to the
polyphonic domain, using both 0th- and 1st-order Markov models of raw note
simultaneities to represent scores [11].

1.3 Our Method

The harmonic models we have developed [1] work by mapping each 12-dimensional
note onset vector s onto a 24-dimensional chord vector of the 12 major and 12
minor triads. This ad hoc mapping takes into account not only the size of the
overlap between the note and the chord, but also the total number of notes in
the simultaneity, and the Krumhansl and Shepard ( [4, 5]) perceptual distance
between the chords in the lexicon:

Context(s, c) =
|s ∩ c|

|s|
∑

c′∈lexicon

|s ∩ c′|
(|s| × Krum(c′, c)) + 1

(1)

This context score is computed for every chord c in the lexicon. Additionally,
inter-vector smoothing1 is performed, whereby neighboring vectors are allowed
to contribute to the partial observation of the current vector. A vector of partial
observations is then obtained by normalizing by the sum total:

PartialObs(s, c) =
Context(s, c)∑

c′∈lexicon Context(s, c′)
(2)

This vector of partial observations over the chord lexicon is then used as the
raw feature set for model estimation. For example, suppose we have a lexicon
of three chords, P , Q, and R. A sequence of partial observation vectors might
appear as in Table 1.

We simply count the number of length m sequences through a piece of music,
each count weighted by the fractional observation amount. Suppose m = 2. We
begin with the window from timestep 1 to timestep 2. The sequence P ⇒ P is
observed in proportion to the amount in which we observe P at timestep 1 and
also observe P at timestep 2 (0.2×0.1 = 0.02). The sequence Q ⇒ R is observed
in proportion to the amount in which we observe Q at timestep 1 and then R
at timestep 2 (0.5 × 0.8 = 0.4), and so on.

We next divide these chains into two parts, the previous state, or history,
and the current state. We define the history H as the first m − 1 chords in the
sequence, and the current state c as the final chord in the sequence. For example,
with an m = 2 chain “P ⇒ Q”, the history is the state “P” and the current
state is “Q”. With an m = 3 chain “P ⇒ Q ⇒ P”, the history is the state
“P ⇒ Q” and the current state is “P”.
1 Note that we are smoothing the data before the model is generated, rather than

smoothing the model itself, as is the common practice.
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Table 1. Partial observation vectors

Partial observation
vectors

Chord 1 2 3 4 5

P 0.2 0.1 0.7 0.5 0.0
Q 0.5 0.1 0.1 0.5 0.1
R 0.3 0.8 0.2 0.0 0.9

Total 1.0 1.0 1.0 1.0 1.0

We ask the question: “Given that I have just seen the history H , what is the
probability of seeing c as my current state?”. We answer this question by doing
maximum likelihood estimation. From our training data we count the number
of times we see the full sequence “H ⇒ c”, and divide by the number of times
we see the sequence H ⇒ x, where x represents any chord. This process yields
a estimate of the conditional probability distribution Ṗ (c|H).

Prior to retrieval, at indexing time, we estimate Ṗ (c|H) for every piece of
music in the collection. At retrieval time, when presented with a query, we esti-
mate a model for the query in the exact same manner. Similarity is calculated
between the query model and every document model in the collection using an
appropriate divergence measure. The documents in the database are ranked in
increasing order of divergence from the query.

1.4 Size and Performance of Harmonic Models

The harmonic models generated for each database document, especially those of
higher order, can become very large. Reducing the dimensionality brings obvious
benefits in terms of model size, and thus in search time.

For a practical MIR system based on this method, it is clear that we need
to find ways to reduce the dimensionality of our models. But it is also desirable
to retain the perceptual/cognitive musical basis for the model so we can still
understand the process of matching, at least to some extent. For this reason, our
first steps in this direction are not based on statistical or other mathematical
dimension-reduction techniques, but on more straightforward means of simpli-
fying the harmonic models.

To assess the impact of dimensionality reduction on overall performance we
conducted our experiments using a version of the Cranfield IR evaluation criteria
( [12, 13]), familiar from the TREC series of conferences [14], which are being
largely adopted by the MIR community. At present, working within a prototype
experimental framework rather than a development environment, we are not
concerned with performance speed, per se, and merely seek to achieve smaller
models while maintaining the highest possible precision/recall figures. We expect
to see a reduction in this performance measure with decreasing dimensionality,
and that is borne out in the results below.

The Cranfield/TREC evaluation paradigm depends on the existence of stan-
dard data-sets from which documents will be retrieved, a set of standard query
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tasks, and a corresponding list of relevance judgments; that is, a list of documents
judged by human experts to be relevant to the standard queries.

Mention of ‘relevance’ here inevitably raises the problematic question as to
what is meant by the term in a musical context [15]. In [16] it was suggested that
a musical query could be judged to be relevant to a database music document
according to how well it ‘evokes’ that document. We believe there is one cate-
gory of musical form that depends crucially on this quality of ‘evocation’: the
Theme and Variations [17]. Almost by definition, a theme is mutually relevant
to the variations. However, this relevance may be ‘evoked’ in different ways by
a composer in different variations from a single set and these ways will differ at
different periods of music history. As our matching technique is founded upon
the notion of common harmonic makeup between query and document, it seems
reasonable, therefore, to restrict ourselves to choosing sets of variations which
are built on a roughly-invariant harmonic structure, although we admit varying
degrees of exception to this which will be outlined below. This is generally the
case with composed variation-sets from the 18th century or before.

We feel that recognizing variations on a given theme (or its converse, identi-
fying a theme from which a variation was derived) is such a fundamental musi-
cological task that a system that carries it out well will be warmly welcomed.
Furthermore, variations need not necessarily be ‘composed’; they arise naturally
(albeit on a finer-grained scale) when different performances of the same work
are recorded, and particularly when different artists cover the same popular song
in differing arrangements. In the last case, generally speaking, while in surface
detail performances may differ greatly, the almost-invariant harmonic underpin-
ning of popular music of all periods is very marked, although we do not test
this assertion in these experiments. (We would not make such a strong state-
ment about jazz, however; this is a genre in which the substitution of chords and
chord-sequences, which—although they are basically closely-related—are often
very different in different interpretations of a ‘standard’, plays an important part
in the creative process.)

Although the present paper does not deal with the matching of ‘real-world’
audio recordings, we should like to draw attention to the fact that our basic
harmonic-matching system has already been used successfully for retrieval of
audio queries from a symbolic database [3, 2], and, more recently, for retrieving
audio queries from an database of cover versions of audio pop and jazz record-
ings [18].

We envisage using lower-dimensionality models in a working MIR system in
two basic ways: a) as a means to ‘filter’ unlikely matches from a large database,
and b) as a first step towards an effective indexing technique for polyphonic
music. A third possibility is to combine the results from multiple low-dimension
searches in ways that work to enhance precision/recall.

2 Dimensionality Reduction in Harmonic Models

Dimensionality reduction can be done in very many different ways. These first
experiments adopt a straightforward approach in order to assess the basic
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practicality of the method. We can derive n-dimensional models directly from
the 24-d ones by either simply selecting n dimensions from the 24 and ignoring
the rest, or by ‘binning’ adjacent clusters of 24

n neighboring dimensions into n
bins.

Our harmonic-modeling method is based on the table of four-dimensional
inter-triad distances obtained from music-psychological experiments reported
in [5]; this can be projected into two dimensions as a pair of interleaved ‘circles
of fifths’, one for each of the major and minor triads (see Figure 1). Our models
are distributions across a chosen lexicon of triads; the size of this lexicon defines
the dimensionality of our models. For our earlier work we used the full set of 24;
in these experiments we shall be using either i) a principled subset of triads or ii)
agglomerations of neighbouring triads. In the first case, we have various options;
in the work reported here, we simply select a) all 12 major triads (see Fig. 1a)
and b) all 12 minor triads. In the second case we construct models of 12, 8, 6
and 4 dimensions by summing groups of 2, 3 (see Fig. 1b), 4 and 6 neighboring
triads from the circle and re-normalizing the resulting distributions.
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Fig. 1. Dimensionality might be reduced by a) selecting certain dimensions, in this
case those corresponding to the major triads only, or b) by combining dimension-
values corresponding to neighboring triads on the double-circle of fifths, in this case
bins of three values resulting in an 8-dimensional model

As stated above, we feel it is important to retain as much ‘intuitive’ grasp of
what is happening in our matching mechanism, and these simple dimensionality-
reduction methods offer that possibility. However, it must be said that we cannot
predict with any certainty whether or not any method of dimensionality reduc-
tion will necessarily and inevitably harm the overall retrieval performance of an
MIR system using harmonic modeling for all queries and all databases. Generally
speaking, we feel that it is not often realized how sensitive almost any musically-
principled data model for MIR is likely to be to the actual nature of the music
in the database and the queries themselves. We have found, for example, not
altogether surprisingly, that sets of music documents judged to be ‘relevant’
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to a certain set of queries (i.e. as sought by a user running those queries) are
likely to lead to very different retrieval results with different models depending
on whether or not the relevant documents are or are not in the same key as a
query. Another issue is the more subtle question of the musical ‘texture’ of a
query compared with the database documents sought by the user; whether, for
example, the music is largely melodic or chordal, and in the latter case whether
it is highly arpeggiated or consists of block chords.

In fact, we believe that in general in MIR, any results are likely to depend very
much on the nature of the queries, the relevance judgements and the database
itself. The only way to ensure that certain databases are suitable for specific
retrieval tasks will be to carry out exhaustive user testing. As yet, we have little
idea of how many generic music-retrieval tasks exist, which is another area of
user-based research that needs further effort.

Also the nature of the retrieval task is important: if we are intending to use
low-dimensionality models in an initial filtering stage of a general MIR system
before we proceed to a detailed passage-level search using some other method on
a reduced number of documents from the database, for example, then high recall
is probably more important than high precision. [19] For a task explicitly based
on matching harmonic structure in the music, high precision possibly would be
a higher priority.

3 Experiments

In order to test the precision/recall performance of a system based on the new
reduced-dimensionality models described here, we needed to built a standard test
set following the TREC model, which comprises a database of music documents
in which the searches will take place and a set of music queries with a set of
associated judgements as to which documents in the database are ‘relevant’ to
each query. This test set needs to be of reasonable size — the database must
be neither so small as to be entirely unrepresentative, nor so large as to cause
serious problems due to difficulties with scaling. It would, of course, be useful in
other testing contexts.

The search method we use here is identical with that described above and
reported previously [1, 3, 2], except that, instead of the widely-used Kullback-
Leibler divergence measure for computing (inverse) similarity between query
and document models, we use here the recently-reported symmetrical Endres-
Schindelin measure [20]2.

3.1 The Standard Database and the Sets of Variations

The standard database we use throughout comprises a collection of nearly 5,500
music files, partly MIDI files in all genres downloaded from the world-wide web,

2 We would like to thank Tak-Shing Chan (Goldsmiths College) for bringing this new
measure to our attention, and we plan to report in detail on our reasons for using it
in due course.
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and including a large portion of the CCARH MuseData collection [21], together
with a number of files of lute music originating in the ECOLM project [22]. It
also includes copies of all the music files used as queries in these experiments
(duly listed as relevant to the queries); in each case we expect to retrieve these
files as first item in the ranked list output by our system. Since this is a uniform
result across all experiments it does not affect our findings, which are entirely
concerned with comparative performance.

The sets of queries we used, six in total, are of two basic types: a) composed
sets of variations (four sets), and b) sets of pieces that are essentially in each
case ‘variants’ of the same musical work (two sets). These are described in more
detail below. For each set, each variation is considered ‘relevant’ to all the others,
regardless of any actual differences perceived in listening. In some cases, for
example, a relevant file may be in a different key, or mode (major or minor),
from its theme; disregarding such anomalies preserves the objectivity of the
experiments, and does not affect their validity as a comparative test of the
dimensionality-reduction method.

3.2 Query-Sets

The four composed sets of variations were as follows:

1. G.F. Handel’s ‘Harmonious Blacksmith’ variations in E major for harpsi-
chord; two different MIDI performances both in complete versions and seg-
mented into separate theme and variations (total: 13 queries3);

2. Handel’s Air and Variations in B flat major for harpsichord; a single MIDI
performance in a complete version and segmented into separate theme and
variations (total: 7 queries);

3. J.S. Bach’s Aria and 30 variations in G major, BWV 988, the ‘Goldberg’
variations, for harpsichord (31 queries; three variations, numbers 15, 21 and
25 are in fact in G minor);

4. Bach’s chorale variations on “Sei gegrüßet, Jesu gütig” in G minor, BWV
768, for organ (12 queries).

The two other sets of queries were not composed sets of variations, but were
assembled manually:

5. 75 settings (c1590-1670) of John Dowland’s “Lachrimae Pavan” in vari-
ous keys and various scorings (solo lute, keyboard, instrumental consort,
solo voice with accompaniment, etc.) gathered and encoded as part of the
ECOLM project (75 queries);

6. A collection of versions in various keys of Gounod’s “Ave Maria”, originally
composed as a “Meditation” on the first prelude in C major from Bach’s 48
Preludes and Fugues for keyboard, to which Gounod added a vocal part; the
set also includes MIDI files of a few versions of Bach’s original prelude, one
or two of which include the fugue as well (12 queries).

3 The segmentation of the queries was done slightly differently for the two sets; hence
the odd total number of queries.
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4 Results and Evaluation

4.1 Retrieval Evaluation

Sets of database models were prepared with dimensionality 24, 12, 8, 6 and 4.
In each case we used a Markov chain-length of 3 (corresponding to a 2nd-order
model) and an event-based smoothing window of 4 adjacent events; we have
found in the course of extended testing that this is the best-performing config-
uration of these parameters for recognizing variations. Searches were conducted
on all six sets of variations, using each theme and all the variations as queries in
turn, and treating each of them as relevant documents for the search; the total
number of queries executed was thus 150. The results of the searches for each
reduced-dimensionality model were averaged over all sets of queries, and stan-
dard 11-point interpolated precision/recall figures for the first 1000 documents
retrieved extracted from the resulting ranked lists. These were compared and
subjected to the t-test for statistical significance.

Table 2. Analysis of retrieval results averaged over all six sets of queries. (Statistical
significance in the percentage change from the 24-dimensional baseline as verified by
the t-test is indicated by an asterisk.)

Dimensions: 24 12 8 6 4
% change % change % change % change

Relevant retrieved: 5646 5983 5.97* 5905 4.59* 6646 17.71* 5398 -4.93*

Interpolated Recall — Precision
at 0.00 0.9471 0.9978 5.3* 0.9978 5.3* 1.0000 5.6* 0.7572 -20.1*
at 0.10 0.6003 0.5895 -1.8 0.4882 -18.7* 0.4992 -16.8* 0.3775 -37.1*
at 0.20 0.4660 0.4648 -0.3 0.3809 -18.3* 0.3674 -21.1* 0.2831 -39.2*
at 0.30 0.4096 0.3952 -3.5 0.3286 -19.8* 0.3330 -18.7* 0.2254 -45.0*
at 0.40 0.3386 0.3227 -4.7 0.2809 -17.0* 0.3008 -11.2 0.1835 -45.8*
at 0.50 0.2755 0.2814 2.1 0.2474 -10.2 0.2651 -3.8 0.14757 -47.1*
at 0.60 0.1311 0.1572 19.9 0.1435 9.4 0.1060 -19.2 0.0848 -35.4*
at 0.70 0.1173 0.1141 -2.7 0.0979 -16.5 0.0738 -37.1* 0.0674 -42.5*
at 0.80 0.0733 0.0872 18.9 0.0848 15.6 0.0541 -26.2* 0.0439 -40.1*
at 0.90 0.0389 0.0456 17.0 0.0466 19.7 0.0141 -63.8* 0.0126 -67.6*
at 1.00 0.0162 0.0244 50.5* 0.0294 81.3* 0.0117 -28.1* 0.0073 -54.8*

Average precision (non-interpolated) over all relevant documents
0.2835 0.2843 0.28 0.2438 -14.01* 0.2334 -17.67* 0.1649 -41.83*

Precision:
at 5 docs: 0.6893 0.6213 -9.9* 0.5133 -25.5* 0.3933 -42.9* 0.4653 -32.5*

at 10 docs: 0.5713 0.5320 -6.9* 0.4127 -27.8* 0.3333 -41.7* 0.3967 -30.6*
at 15 docs: 0.5107 0.4796 -6.1* 0.3667 -28.2* 0.3422 -33.0* 0.3587 -29.8*
at 20 docs: 0.4693 0.4427 -5.7* 0.3510 -25.2* 0.3430 -26.9* 0.3313 -29.4*
at 30 docs: 0.4033 0.3956 -1.9 0.3216 -20.3* 0.3373 -16.4* 0.2849 -29.4*

at 100 docs: 0.2427 0.2325 -4.2* 0.2101 -13.4* 0.2525 4.0 0.1681 -30.7*
at 200 docs: 0.1479 0.1488 0.6 0.1372 -7.2* 0.1540 4.2* 0.1157 -21.7*
at 300 docs: 0.0681 0.0705 3.6* 0.0681 0.0 0.0715 5.0* 0.0617 -9.4*

at 1000 docs: 0.0376 0.0399 6.0* 0.0394 4.6* 0.0443 17.7* 0.0360 -4.4*
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averaged over all queries

The total number of documents retrieved in the first 1000 for each search
over all queries was 150000; the total number of relevant documents was 11340.
A statistical summary of the retrieval results is given in Table 2. The 11-point
interpolated recall/precision curves are shown in Fig. 2, and a plot of recall
against number of documents retrieved is given as Fig. 3.

Considering precision first, from Fig. 2 we can observe a general and ex-
pected reduction of precision as model dimensionality is reduced, although this
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is not a simple linear decline. However, as the percentage change figures given
in Table 2 show, the difference between the recall/precision performance of our
24-dimensional and 12-dimensional models is not statistically significant. (This
group of figures is given in bold and italic in the table.) Turning to the recall
curves plotted in Figure 3, we can see that the total number of relevant doc-
uments retrieved for each search does not necessarily decline with decreasing
dimensionality. In fact, at 1000 documents, our 6-dimensional model is by far
the best performer by this criterion (see the figures shaded in Table 2), returning
17.7% more relevant documents on average.

5 Discussion

The most important result from our experiments is that we can indeed achieve
equivalent precision/recall retrieval effectiveness from a 12-dimensional model
to that we can from our full 24-dimensional one. This will have a very signif-
icant impact on retrieval efficiency as well, before we consider other speed-up
techniques, such as indexing.

This improvement in efficiency can be easily demonstrated by considering the
basic number of parameters in our models at different dimensions. The deter-
mining factor for the model size, that is, the number of parameters, n, of a
model of dimensionality d and Markov order m is given by the simple formula:
n = d(m+1).

Thus for the 2nd-order models used in these experiments, the model size
decreases with dimensionality according to Table 3:

Table 3. Decrease in 2nd-order model size with number of dimensions

Dimensions n

24 24(2+1) = 13, 284
12 12(2+1) = 1, 728
8 8(2+1) = 512
6 6(2+1) = 216
4 4(2+1) = 64

Firstly, our 12-dimensional models are 8 times smaller than the 24-dimensional
ones, and we can thus expect an eight-fold reduction in search-time by using
them; as we have seen from the recall/precision results, this is at no statistically-
significant cost in precision.

Secondly, our 6-dimensional models are another 8 times smaller again, so
with these models we can expect a decrease in search time of no less than 64
times compared with the 24-dimensional models. While we have seen that the
precision of these 6-dimensional-model searches will not be as good as with the
24-dimensional models, their recall is much better.
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Fig. 4. Size and time results for a typical retrieval experiment (75 queries) plotted
against dimensionality of model

Any reduction we can achieve will have a beneficial effect on retrieval response
time in particular, as larger models take longer to match. Figure 4 demon-
strates informally how model size and search times decrease dramatically as
dimensionality is reduced in practical tests using the methods described in this
paper.

Given these improvements in efficiency, we could in fact carry out multiple
low-dimensional searches in much less time than a single 24-dimensional search.
An obvious method for retrieval will be to use the fastest, 6-dimensional-model
search as an initial filter, passing the top 1000 retrieved documents to a second
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stage where they are searched with much greater precision using a 12-dimensional
model.

Some documents will, of course, not be retrieved at all in this two-stage
process: those that do not appear within the top 1000 documents for the 6-
dimensional-model search. While this may at first sight seem to be a problem,
we are not very concerned about it. The reason is that, actually, the retrieval task
we have set ourselves — to retrieve all variations in each of the query-sets — is
not likely to be achievable with our present simple models on two counts. Firstly,
some of the queries are in different keys from the others (see query sets 5 and 6),
and some of the queries are in a different mode (major or minor) from the others
(three of those in query set 3). These ‘anomalous’ queries typically appear well
below the 1000-document threshold in retrieval experiments. We do, however,
have methods for dealing with these particular problems, which we are actively
pursuing.

6 Further Work

6.1 Other Reduced-Dimensionality Models

It is possible to devise other reduced-dimensionality models of harmony, in fact,
an indefinite number of them. We have restricted ourselves to those for which we
have some intuitive grasp of the way they probably work. Reducing dimensions
by statistical methods, or by more complex selection of dimensions, is likely to
remove this intuitive aspect. However, we have tested two 7-dimensional models
whose dimensions are based on triads built on the seven members of the C major
scale (C, D, E, F, G, A, B), and on those of the G minor natural scale (G, A,
B�, C, D, E�, F). With our test data, these performed extremely well, but we
do not present these results here, as we feel that they are probably biased by
the tonality of the query-sets and are unlikely to represent any kind of universal
performance. Furthermore, we find it hard to explain exactly which aspects of
harmony we are in fact modeling with them. It would be possible to reduce
model dimensionality by selecting dimensions according to the tonal/harmonic
makeup of the database, but this would have to be accompanied by a great
deal of testing. The same would be true of statistical dimensionality-reduction
methods, but they would have the advantage of objectivity.

6.2 Indexing

We hope that the reduced-dimensionality models can be used as a basis for
an indexing strategy. Multi-dimensional indexing is a complex area, with many
applications, and we therefore hope that general solutions will emerge. However,
it seems likely that the fewer dimensions are involved the more successful any
indexing system will be. Perhaps the simplest method would be to decide on a
number of harmonic states into which we bin our harmonic signatures. This is
effectively a reduction to a single dimension of harmonic labels which can be
searched very quickly. This would actually be most powerful as a method for
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passage-level retrieval, where we would produce a string of such harmonic labels
for each piece from our partial observation vectors rather than the complete-
piece signatures. Some such data-structure as the suffix tree could then be used
for very efficient searching4.

6.3 Smoothing

In earlier work, we showed the importance of smoothing, in essence, the choice of
size of the window with which we traverse the musical data and collect the pitch
data from which we build our harmonic partial observations. Effectively, this is
a process of shifting some of our partial observations forward in time, to reduce
the problems caused by gaps, deletions and insertions in polyphonic music; this
is the main reason for the general robustness of our matching method. We have
consistently found that, except with 0th-order models, smoothing is essential
to achieve reasonable retrieval results, and, furthermore, that larger amounts of
smoothing are more beneficial as model order increases. In our present work we
use näıve, event-based smoothing, just as we did in our earlier experiments. It
is quite possible that a more ‘intelligent’ smoothing mechanism, either based on
onset-time or beat segmentation, or some form of adaptive method, would give
better retrieval results, but this needs to be the focus of further research. The
crucial point is that the smoothing of queries and documents must be consistent
in a search.

6.4 Transposition Independence

In [1] we describe a transposition-invariant version of our model, which allows
us to match queries and documents containing similar harmonic transitions, but
globally transposed onto a different pitch-level or key. An inevitable consequence
of allowing these matches is some general loss of precision in the un-transposed
matching task. Although we have not conducted a full set of tests at the time of
writing, there is some evidence that this loss of precision is in fact less in some
lower-dimensional models than in the full 24-dimensional ones. More testing is
needed, but if this initial finding is confirmed, it is another very positive outcome
of the dimensionality-reduction exercise that we hope to exploit in future work.

6.5 Merging Results

It is a well-known result that if multiple classifiers each give results better
than random, one can achieve results better than each classifier individually
by combining their classification hypotheses. [24] We can treat our ranked-list
results as classification hypotheses, and ‘merge’ the lists to obtain a more effec-
tive ranking. We are conducting tests with ranked lists output by searching with
different models, and hope that this could be a means to enhance recall/precision
performance.

4 This technique has been used by Michael Casey in an audio-retrieval system [23].
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Abstract. In this paper, we propose a paradigm for computer-based
music retrieval and analysis systems that employs one or more explicit
abstraction layers between the user and corpus– and representation–
specific tools. With illustrations drawn from “battle music”, a genre pop-
ular throughout Renaissance Europe, we show how such an approach may
not only be more obviously useful to a user, but also offer extra power
through the ability to generalise classes of tasks across collections.

1 Introduction

As more digital resources are created for musicologists and musicians, there is an
increasing demand for tools that can facilitate the use of these corpora and make
them accessible for both retrieval and analysis. There are several impediments
to the development of such tools, the most significant of which arise from the
diversity of both the potential user base and the nature and structure of the
resources themselves. In order to construct general tools for a variety of users
and a range of digital musical resources, we need to define a domain of interaction
between user and data that can be abstracted both from the electronic data and
also from the users’ descriptions of music.

A generalized system for music retrieval and analysis requires several ele-
ments. Firstly, it needs an ontology1 which will provide methods for describing
musical features observed or sought by users and which may be mapped, with
reasonable fidelity, on to descriptions of the features as they occur within ver-
balised musical discourse. Secondly, it needs a structural definition of how to
combine these ontological elements and have them interact to form a descrip-
tion of a feature-based query. Finally, it needs interfaces between users and this
layer of abstraction, and between it and the music data: the former tailored to
users’ interests and requirements, and the latter to the special nature of the data
in a corpus, its formats and its representations. Figure 1 provides a schematic
representation of such a system.

Such a system gains descriptive power – and generality – by separating the
user from the implementation details of the corpora and the methods used to

1 Our use of the term follows [1].

R. Kronland-Martinet, T. Voinier, and S. Ystad (Eds.): CMMR 2005, LNCS 3902, pp. 249–258, 2006.
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Fig. 1. Schematic representation of a system in which the users’ interactions with
corpora are always mediated by an abstraction layer

retrieve information from them. The users’ communities and the areas of their
studies will inform their needs, and their modes of interaction with a Music
Information Retrieval (MIR) system should vary accordingly. Similarly, the in-
dividual needs of a corpus, its medium or its representation format create a
parallel need for abstraction at a lower level.

Whilst the low-level corpus interface has received limited attention [2, 3, 4, 5],
the higher-level interface has received almost none (exceptions are [6] and [7],
both of which point to the need for such an abstraction for use by musicologists,
although little further detail is given in either case).

In this paper, we introduce elements of this abstraction layer, discussing and
illustrating some of the properties the layer and its components will require. We
conclude by expanding our scope to include metadata in its broadest sense and
considering how to move towards a fuller specification for our system.

2 Definitions

Before we can discuss the vocabularies of users, we must first explain our own,
since we use a number of terms in an altered or specialized sense.

Feature. In a musical sense, any aspect of a piece that may be described, and
located from that description (see, for example, the use of the term in [8]).
Usually the aspect will be melodic, rhythmic, textural, timbral or any com-
bination of these.

Simple Feature. A feature that cannot usefully be subdivided into a combi-
nation of smaller features. A single note duration or interval, for example,
would be considered to be a simple feature in this sense.
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Compound Feature. A feature that is recognizable as being made up of sev-
eral features in combination. Compound features are usually specific and
named in our usage, serving to mark out individuating aspects of a class
of pieces, whereas a simple feature may be ubiquitous, and therefore not
discriminatory.

Constituent Feature. A feature that forms part of a compound feature.
Feature Description. Where feature is roughly analogous to a part of a user

need (that is, a musical idea sought in a corpus), the feature description is
part of the user narrative (an expression of that need or description of the
idea), on its way to becoming a formalised query.

3 Towards a Vocabulary for Musicological Queries

High-level verbal descriptions of music tend to function primarily in two ways:
on the one hand, they may draw attention to elements of a work or group of
works that resemble others, often implying some degree of kinship; and on the
other, they may show elements that distinguish one work or group from another.2

In either case, the description not only requires knowledge of the music that is
being explicitly described, but also draws upon a reference set – or repertory –
with which all comparisons are implicitly made. This repertory might consist of
a list of specific works, or even simply a genre or period – such as “Romantic
opera”, “1940s swing” or “Renaissance lute music” – about which a degree of
familiarity can be assumed.

Each repertory has a community around it who will take it, and how it is
constituted, for granted. The community fashions its own vocabulary for dis-
cussing the repertory and relating other music to it. This vocabulary may use
different, specialist terms for some elements of the music or may simply ap-
ply existing terms in novel or more specific ways.3 Not only do some elements
of the vocabulary mean different things within different communities, but the
same feature may be described in many different ways. It is clear, then, that
it will be necessary to explore different communities and their respective dis-
courses to get a strong idea of how these vocabularies may be applied in a
computational context. Such a broad investigation has not yet been carried
out.

In the context of MIR, a few surveys (see, for example, [11] and [12]) have
investigated the questions that people ask – or would like to be able to ask –
of music resources, physical or virtual. Such surveys greatly enhance our un-
derstanding of users’ vocabularies, methods and practices, but they are usually
drawn from a single amalgamated sample or are divided into groups by social
rather than musical criteria. By using questions that relate clearly to current
applications of MIR or by basing data on existing querying practices, studies
2 This distinction is visible in the division traditionally drawn between music theory

and music analysis.[9]
3 Here, our concept of community is related to that described by Kuhn in his postscript

to [10].
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have tended to limit participants’ contributions so that only existing informa-
tion retrieval paradigms are explored. The inevitable ambiguity that arises from
the use of multiple vocabularies may be greatly reduced by separating a user
interface (which may be customized for a single community) from the more gen-
eralised abstraction layer that articulates the query to the search tools. Those
search tools can, in turn, be specialized to the material on which they work,
allowing sensitivity to the nature of the data.

The machine-representation side of data abstraction at fine-grained levels of
detail has been studied elsewhere [2, 3]; to achieve the ends sought here, higher
level structures and predications about them would be necessary [4, 5]. However,
the focus of the current paper is on the musical side of the abstraction layer,
and therefore we discuss the machine side no further.

3.1 Example: ‘Battle’ Pieces

To illustrate our approach and demonstrate its relevance and usefulness for cur-
rent musicology, we look at a recent study by Michael Gale [13] of a loosely-
defined group of ‘battle’ pieces which date from the early sixteenth century into
the middle of the seventeenth [14]. In this example, our repertory (in the sense
described above) is European music of the Renaissance, taking in vocal genres,
ensemble music and keyboard and lute traditions. The vocabulary we generate
for talking about these pieces, then, will be constructed in relation to this back-
ground, but we shall also look at how its elements might contribute to a more
general ontology.

Battle pieces vary greatly in form, instrumentation, length and function: their
similarity arises primarily from the deployment of features drawn from a common
palette – with no requirement that they be consistently used in their original
context. These features may be melodic (often quoting from popular songs), tex-
tural or harmonic in nature, and it is this variety that makes them of particular
interest in the context of this paper.

The spectacular popularity of these pieces in their own time means that they
are extremely widespread across surviving music sources: hundreds of them ap-
pear in music manuscripts and prints from the period. This means that the
retrieval task of distinguishing these widely-dispersed pieces in a larger encoded
corpus is one with real applications. Furthermore, Gale [13] discerns subgroups
of battles, each distinguished to a varying degree by the presence of its own
additional features or its particular use of the general battle features.

Gale and Lewis [15] implemented search tools to find several of the fea-
tures described, operating on a mixed-format corpus of MIDI and TabCode4

files. They presented the results to illustrate the efficacy of searching a corpus
by combining several different features; here, we concern ourselves more with
the general attributes of the features themselves and how they combine and
interact.

An example of how compound features may be produced through the combi-
nation of smaller elements may be seen in a common feature, originating from a
4 An ASCII encoding scheme for lute tablature. [16]
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passage in the most influential battle piece of all, Janequin’s chanson La Guerre,
and appearing in a substantial number of subsequent works. Figure 2 shows this
feature as it appears in the original chanson (a) and in a later instrumental
battle pavan (b).

Fig. 2. Extracts from (a) Janequin, La Guerre ([17], pp. 24-25, text removed here for
clarity) and (b) Moderne, Pavane. La Bataille, showing the same ‘antiphonal’ feature
([18], p. 23).

This is a compound feature, which we shall call the ‘antiphonal’ feature: a
phrase (X), which is subsequently imitated an octave (sometimes two octaves)
below (X′), then a shorter phrase derived from the tail end of its predecessor (Y)
and also similarly echoed (Y′). In Janequin’s original, only the first chord of the
X′ imitation is changed, but Moderne radically alters the lower voice. Although
X may vary between pieces, there is enough common ground to construct a
melodic outline which can form the basis of a query. Despite the varied amount
of time separating each phrase from its echo, the duration elapsing between X
and X′ is always greater than that between Y and Y′.

So, to abstract this verbal description – to make it modular and each mod-
ular element reusable – we identify two descriptive elements: Melody, which
describes pitch and rhythm relationships; and Imitation, which describes the
application of a process of transformation to a phrase. These elements are com-
bined either simultaneously or in sequence, i.e. they are either Concurrent or
Consecutive.

We can represent this particular feature-description in a block diagram
(Figure 3). This diagram is a graphical abstraction of the ‘antiphonal’ feature,
which can (when specified more formally) now be added to a list of features
which are characteristic of battle pieces and may be used in identifying them.
As further features are added together with descriptions of their relationships,
we begin to accumulate an ontological vocabulary for describing a set of pieces
against the background of a broader repertory. As additional studies are added,
the vocabulary of this ontology gains general descriptive power.
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Fig. 3. Block diagram illustrating the combination of features to form a description of
the ‘antiphonal feature’. Arrows indicate pointers within the structure, either to other
modules (as in the case of the combining elements Concurrent and Consecutive) or to
values within other modules (as in the case of the second Imitation, which compares
its parameters with those of the first).

4 Corpus Interaction

Many different MIR algorithms and tools are now in use and/or described in
print and, although all the tools used in the ‘battles’ project were written from
scratch, several could in principle have been derived from pre-existing work (had
that work been appropriately implemented). Potentially, much of the task of
enabling interaction with a corpus consists of mapping existing MIR tools on
to the ontology outlined above – one can consider the ontology as a means of
abstracting human descriptions of music and the MIR tools as a way of doing the
same for machine representations of music. The issue, then, is mapping between
the two abstractions.

In both cases, there is an element of interpretation and a real danger of data
loss. The features descriptions, in their abstracted form, in aiming for maxi-
mum generalizing power are likely to have lost some of the subtlety of a plain
verbal form, whilst the choice of applicable MIR tools is also bound to be an in-
terpretative process. Musical terms rarely have concrete definitions, nor are the
terms necessarily fixed with respect to time or context; in order to use them, it is
necessary to come to some general agreement about their use in certain contexts.

Different corpora will require different tools or different configurations and
combinations of those tools. Some research questions are self-limiting, being
only applicable to certain musics or domains: a survey of pitch spelling as pieces
move from flat to sharp keys, for example, can be conducted in the symbolic
domain but not in the audio domain, since a recorded pitch (frequency) rarely
allows one to distinguish, say, a C� or a D�; on the other hand, a study of
intonation – whether a performer plays sharp or flat of some reference pitch –
would only be applicable to audio. A reference to the use of a certain fingering,
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however, might not be so straightforward: in symbolic representations, it might
be explicit – marked in – or it might be implicit – if an earlier note, or group
of notes, has a fingering-pattern marked that suggests it might be applicable
elsewhere – or it might be deduced by some algorithm (see, for example, [19]); in
audio, such information might conceivably be deduced from timbral information
from recordings of some instruments – but it will not be explicit.

Not all these differences are to do with the medium or domain of transmis-
sion, however. For example, in the battle music we are dealing with, notated
durations are frequently scaled by a factor: the second phrase in the antiphonal
feature (Figure 1), for example, is written in quavers in Janequin’s original but
in crotchets in the Moderne version, although the pitches of the melody are
identical.5 A melodic feature search appropriate for this corpus, then, also needs
to work for augmentations (expansions by a factor) and diminutions (reductions
by a factor) of the query’s rhythm.

5 Generalised Nature of Features

Much of the power offered by our proposed approach arises from the extent to
which features may appear in many different contexts, retaining some sense of
identity even where their role in the music is substantially changed.

This may be illustrated by reference to another common feature in battle
pieces, the musical depiction of a fife (small flute) and drum. Figure 4 shows an
extract from William Byrd’s keyboard piece, The Battell, which has all of its
main features, and is even explicitly captioned ‘The Flute and the Droome’.

Fig. 4. Extract from Byrd’s The Battell (from My Ladye Nevell’s Booke, [20], p. 30),
section entitled ‘The flute and the droome’

In this extract, the sound of the drum is represented by repeating a rhythmic
pattern (labelled R) on an unchanging low chord, a drone consisting of the key-
note with a fifth and octave added above it. The fife is represented as a high-
pitched melody, moving quickly in relation to the general pulse of the music.
The fife melody varies from piece to piece, but tends to move almost entirely by
step or small skip and to end with a descending sequence (labelled S).

A block diagram showing how this feature description might be expressed is
given in Figure 5. Any of the constituents of this feature, taken separately, could
5 These are originally crotchets and minims respectively in the sources, but note du-

rations have been halved in the examples given for ease of reading.
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certainly not be used to locate it, and merely identifying each of them within a
single piece would also be insufficient; we need to be able to specify further that
they occur simultaneously, or at least in close proximity – hence the use of the
combining element Concurrent in Figure 5. Taken individually, each constituent
feature can be associated with a host of other uses and meanings, often depending
heavily on context, and thus could form part of many varied queries. Repeating
rhythmic patterns form the basis of many dance forms – most famously, perhaps,
the snare-drum pattern running continuously throughout Ravel’s Bolero. Other
queries might incorporate searches for a repeating rhythm, unspecified (as here)
or specified (as in a search for a particular dance).

Fig. 5. Block diagram illustrating the combination of constituent features to form a
description of the ‘fife and drum’ compound feature. Rhombus-shaped blocks are filters,
in this case filtering for the ‘treble’ and ‘bass’ pitches or voices.

Similarly, the use of a drone separated from the ‘drum’ rhythm is often seen as
a marker for ‘rustic’ music, conjuring up images of bagpipes and hurdy-gurdies.
The ‘pastoral music’ topos, most famously used in Beethoven’s Sixth Symphony,
makes extensive use of the drone, along with many other features that could be
used for retrieval of pastoral music, including imitations of birdsong and other
animal noises, the use of compound meter, and many other localized rhythmic
and melodic markers. Thus, although the larger-scale feature descriptions may
be unique to a particular expression of a query, the individual units would be
expected to receive significant reuse, and this reuse could easily occur in the
context of very different music.

6 Conclusion and Future Directions

We have suggested throughout this paper that a user need not be (indeed,
most users should not be) routinely exposed to the details of the internal data
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representations used in corpora to perform information retrieval tasks. By em-
ploying a layer of abstraction between the user and the corpus-specific search
tools, we can create a representation of a query that is (largely) independent
of the format of any given resource. If a sufficiently stable, standardised core
vocabulary can be established – by accumulating elements from many musical
communities – then it is to this that developers of both user interfaces and
music resource search tools could look, thus allowing a substantial degree of
interoperability.

Thus far, no mention has been made of one of the most important elements in
music descriptions: textual metadata. Almost every musicological query, whether
expressed on a computer or elsewhere, will contain components that arise not
from the music itself, but from extrinsic information such as title and attribution
information, dates and details of provenance, performer’s names or references to
concordances. All this – along with information derived from the notated music,
analytical information from research, and any other relevant data – we refer
to under the blanket term metadata. Such data forms a vital foundation for
supporting further investigation but can be very complex. As we have seen to
be the case for musical data, there are many ways of describing the same thing
and a single description can have many possible meanings; there are also many
standards for representing the data itself and widely divergent requirements arise
from different communities.

The mechanisms and structures for metadata in the abstraction layer should
be the same as (or at least compatible with) those for the vocabulary based on
the musical data. In many cases, there is likely to be some overlap: with a piece’s
key, for example, being extrinsic metadata in one resource but derived from the
music content in another. In this case, the vocabulary term ‘key’ needs to be
able to accommodate both origins transparently.

With more research on the nature and variety of human musical description
and musicological practices, we can expect to gain a better understanding of the
ontology and structures that a system such as we describe here will require. Once
these structures are well enough understood for us to create a general specifica-
tion, it should be possible to build a system sufficiently powerful to demonstrate
the principles of generalization and interoperability we describe here.
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Abstract. We describe a system for the entry and editing of music in
lute tablature. The editor provides instant visual and MIDI feedback,
mouse and keyboard controls, a macro recording facility, and full run-
time extensibility. We conclude by discussing planned future functional-
ity and considering other potential applications for the technology.

1 Introduction

The Electronic Corpus of Lute Music1 seeks to act as a first point of reference for
researchers in lute music and to raise the profile of the repertoire. The Western
European lute is an instrument of great historical importance, and estimates [1]
suggest a still extant repertory of nearly 60,000 pieces scored for the instrument.
Yet, despite its clear significance, the lute and its music play a comparatively
minor part in current musicology: the music is not generally well-known and its
historical rôle rarely discussed.

This obscurity arises in part because the surviving sources are often miscel-
lanies, making location of works by a single composer or finding sources for a
specific piece difficult. More significant, perhaps, is the fact that the notations
for lute music are very different from staff notation: anyone curious to explore
the repertory must first learn the notation and, until they become experienced,
to transcribe the pieces into a more familiar format.

ECOLM [2] aims to make it easier for lute music to be appreciated by non-
experts, without the need to understand fully either tablature or the technique
of the instrument, whilst still providing scholars with the detailed, specialist
information where it is required (see [3] for an example). The core of the project
consists of musical encodings, forming an online edition, providing ‘diplomatic
facsimiles’ (i.e. literal transcriptions), editions, and computer-generated MIDI
and staff transcriptions. We also seek to create an infrastructure for distributed
editing, necessitating an encoding system and a user interface.

2 Lute Tablature and TabCode

Lute music is written in a variety of different tablature forms. The notation tells
the lutenist which strings should be played at which frets and when. The most
1 ECOLM 2 is the second phase of a five-year grant provided by the UK Arts and

Humanities Research Board (now Council).
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common approach is to use horizontal lines (similar to staff lines) to represent
strings, and letters or numbers placed on them to represent frets – a practice
that survives to this day in guitar tablature. The music is read left to right, with
rhythm signs placed above to indicate timing. At its most basic, lute tablature is
entirely sequential in nature, with one chord following another without notated
overlap, and it is impossible to indicate multiple simultaneous rhythms.

Clearly, this attribute makes the transfer of the notational information into
ASCII for use in the corpus a much simpler proposition than has been the case
for the majority of classical music scores. Crawford [4] describes a format called
TabCode for encoding lute tablature as a series of ‘tabwords’ separated by white
space. Each word begins with a character indicating the rhythm sign (the initial
of the name of that sign: H for half note, Q for quarter, etc.), if present, followed
by a letter-number pair for each symbol in the chord, with the number signifying
the string and the letter the fret.

Qa1a2b3c4c5a6
Ea2
a6
d6
a2b3
d2f3
d6
|

Fig. 1. An extract from ‘Fantasia Ioannis Dooland Angli Lachrimae’, Jean-Baptiste
Besard, Thesaurus Harmonicus (1603), f.16v, and its TabCode encoding

TabCode was designed as a terse, human-readable language, enabling fast
input and editing whilst still preserving descriptive power. Encodings of lute
music in other tablature representation languages such as abctab [5] and **fret
[6] can be converted trivially to TabCode, which contains a richer vocabulary for
this repertory. For a more sophisticated set of text-critical and editorial tools, we
are working with Frans Wiering to produce a mark-up for TabCode, TabXML,
drawing from TEI[7] and MEI[8] standards2.

In order to create camera-ready artwork, in particular for [10], Tim Crawford
wrote The Tablature Processor, a Macintosh-based application with its own
binary file format, but capable of importing and exporting TabCode. The Tab
Processor has some facility for data entry, but is primarily a type-setting program
for a type of lute tablature.

2 For a discussion of TabXML and its relationships with the standards cited, see [9].
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3 TabEditor

We have developed a new application to speed the process of entering and editing
TabCode. This application provides a syntax-aware editor in the Emacs tradi-
tion, along with a graphical view of the currently-edited score, which updates in
real-time as the user manipulates the textual TabCode buffer. In addition, this
graphical view is mouse-sensitive (as is the editor buffer) and allows interaction
with the graphical objects, while retaining the primacy of the text represen-
tation: manipulation of the graphical object is implemented as a sequence of
manipulations on the text. We also allow the option for the user to receive im-
mediate audio feedback of the current chord at its completion, as well as region
or full-piece audio rendering.

The major improvement in this application compared with previous editors
is the immediacy of the feedback; however, from the editor’s Emacs heritage
comes extensibility, both through explicit definition of additional functionality
at run-time and through the ability to record keyboard macros for automation
of repetitive tasks.

This application is not at present able to produce an edition-ready rendering
of TabCode, unlike the Tablature Processor; this stems directly from the fact
that the textual TabCode is required to contain all the information in the appli-
cation: the language is rich enough to express the semantics of a lute tablature
manuscript, but not the necessary tweaks that an editor makes for the print
copy of a work. However, it is capable of rendering the TabCode to draft-quality
PostScript or to an image for further processing, display or printing, and is used
on-demand for this purpose in the ECOLM Web frontend.

Fig. 2. The tablature editor and graphical display. Note the third bar of the tablature,
which corresponds to the fragment in figure 1.
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3.1 Implementation Details

The application is written in Common Lisp, using the SBCL [11] environment,
the McCLIM [12] implementation of the CLIM specification for graphical inter-
face management, and Climacs, a CLIM editor, as our editor substrate. It is
beyond the scope of this paper to give a detailed exposition of CLIM’s capabili-
ties: we refer the interested reader to other sources such as [13]. For our purposes,
CLIM associates graphical output with application data through presentations,
and manages the efficient redrawing of application state through incremental
redisplay.

The CLIM presentation facility provides what is in some sense an object-
oriented renderer: when drawing the graphical view of the tablature denoted by
the TabCode, the graphical elements retain their association with the tabword
objects that result from parsing the editor buffer. This then allows a trivial
implementation of actions such as moving the cursor to the point in the buffer
corresponding to a particular chord in the graphical view, and a relatively simple
implementation of commands for musical manipulation (such as one to move
glyphs up a string to correct a typographical error) operating on the textual
TabCode but triggered by an action in the graphical view.

Although the Climacs editor includes a syntax analysis module [14] based on
a parser implementing Earley’s algorithm [15], the generality of this framework
was not needed for an encoding language as simple as TabCode (which is fun-
damentally a regular language). Instead, we implemented a combined lexer and
parser, which on a parse error preserves the partial parse, if any; advances to
the nearest lexically following whitespace; and resets the analyser’s state.

This permissive behaviour on a TabCode parse error is motivated by the
observation that textual editing will tend to cause the buffer to go through locally
invalid states during the course of one logical edit (e.g. entering a single tabword),
and that it would be distracting to the user to cause this local invalidity to
propagate to the global state of the parser as displayed in the rendered tablature
window.

This parser generates a sequence of tabwords from the text in the editor
buffer, reusing portions of the previously-generated sequence (active before the
edit) if it can prove, based on the extent of the text region ‘damaged’ by user
interaction, that the parse is unchanged.

Incremental redisplay is in some sense merely an optimization, but it is a
sufficiently broad one that it merits discussion: it permits the system to avoid
redrawing output if it can determine that this will not be necessary, on an
object-by-object basis. We use this optimization by preserving the identity of
those elements of the parsed buffer contents which can be proved not to have
changed, as described above. This cache not only informs the display within the
editor buffer – highlighting parse errors, for example – but also the graphical
view: a chord need not be redrawn if it has not changed since the last edit.3

3 In addition to this, it should also not have changed its position. This is the case for
many edits in a TabCode document: only those which change an element’s width
will affect the positioning of subsequent elements on that line.
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4 Conclusions and Future Directions

The real-time feedback provided by this application has met with approval from
its users, including some with limited technical skills: errors are corrected more
quickly, and the ability to find the area in the TabCode source corresponding
to a place in the graphical output allows more efficient navigation. The CLIM
framework assisted us in development of this application by providing the means
to associate high-level application data directly with the graphical output.

TabCode is a simple language when interpreted as a sequence of tabwords
representing notated elements. However, for general semantic analysis and dis-
play purposes, a slightly more sophisticated parsing framework is required: to
accommodate hierarchical groupings such as beaming, connecting lines and so on
tabword groups must be formed. These hierarchical groups can be incrementally
maintained in the same manner as the sequence of tabwords, by computing the
overlap of groups with the ‘damaged’ region in the editor buffer.

A feature planned for the near future is transcription of the current buffer to
score (in Common Music Notation). The initial transcription algorithm should
prove fairly simple, as each chord can simply be directly transcribed; difficulties
remain in the areas of pitch spelling and readable, musically sensible, polyphony.

We believe it would be relatively simple to adapt our application to support
other textual representations of music (such as Humdrum’s [6] **kern) or more
generally of two-dimensional data, while maintaining the association between
graphical display and textual input. Such an adaptation would need to provide
only a resynchronising parser and a renderer for parse trees.
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Abstract. This paper takes a look at computer music modeling and information 
retrieval (CMMIR) from the point of view of the humanities with emphasis 
upon areas relevant to the philosophy of music. The desire for more interdisci-
plinary research involving CMMIR and the humanities is expressed and some 
specific positive experiences are cited which have given this author reason to 
believe that such cooperation is beneficial for both sides. A short list of some 
contemporary areas of interest in the philosophy of music is provided, and it is 
suggested that these could be interesting areas for interdisciplinary work involv-
ing CMMIR. The paper concludes with some remarks proffered during a panel 
discussion which took place near the end of the Pisa conference on September 
28, 2006 and in correspondence inspired by this discussion, together with some 
brief commentary on the same. An earlier, somewhat short version of the pre-
sent paper provided the impetus for said panel discussion. 

1   Introduction 

Traditionally, the extent to which the substantial content in humanistic discourse 
about music – such as that produced within musicology, philosophy, aesthetics,  
and vocal and instrumental pedagogy –  has been influenced by the thinking behind 
developments in electronic technologies for sound reproduction, storage and produc-
tion has been very limited, if not negligible.  The dominant attitude on the part of  
the humanities regarding the relationship of technology to theorizing about music and 
to musicianship has been one of handmaidenship: technology enabled us to hear  
performances again, to have access to performances we otherwise would not have had 
a chance to hear, and it could help to compensate for inadequate acoustics in concert 
venues by providing us with amplification. All the intellectually respectable and  
culturally important cogitating from the point of view of the humanities, however,  
was that which dealt with the questions of the sonic content of these recordings and 
performances;  the recordings and amplified performance were, if anything, inferior to 
live, “acoustic” ones (the appropriate modifications of this remark applying mutatis 
mutandis to jazz, rock, etc.) and the theorizing which was involved in developing and 
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achieving the results afforded by the various technologies was seen as the purview of 
engineers, acousticians, and other applied-science types. 

The foregoing remarks are intended to set the tone for some investigatory mus-
ings regarding the ways in which computer music modeling and [information] re-
trieval (CMMIR) may be seen as a field of technological development which has 
the potential for changing this relationship between humanistic and technological 
approaches to music. Since I am situated within the humanities as a member of a 
philosophy department, my thoughts will mainly have the philosophy of music and 
related areas of aesthetics as their point of departure. These deliberations are what 
will constitute the principle theme of this paper, and they are the matters to which 
we will now turn. 

2   Background 

The alert reader is perhaps already asking him- or herself how the author of this 
paper, herself a philosopher, ever became sufficiently aware of what was going on 
the CMMIR side of the fence to regard the research being done there as relevant to 
humanistic research. Since this is a good question, I will take the time to answer it 
here.  

My ongoing fascination with computer music modeling and [information] retrieval 
can probably be dated back to some presentations which were given by fellow partici-
pants – particularly Thomas Noll and Marc Leman – at Music and Logic, The Twelfth 
Meeting of the FWO Research Society on Foundations of Music Research at the Insti-
tute for Psychoacoustics and Electronic Music at Ghent University at the beginning of 
2001. 1 Later on in 2001 the Danish Research Council for the Humanities provided 
two year’s worth of funding to start up the research network NTSMB, Netværk for 
Tværvidenskabelige Studier af Musik og Betyding/Network for Cross-Disciplinary 
Studies of Music and Meaning. 2 CMMIR made its debut within NTSMB during the 
international conference Nature, Culture and Musical Meaning in the summer of 
2002 with Marc Leman’s presentation “Musical Meaning Formation from the View-
point of Microscopic Musicology.” It played a major role in the third national meeting 
of NTSMB – Musik, Logik og Teknologi/Music, Logic and Technology in November 
2002, where the presentations given included papers by Anders Christian Gade and 
Christoffer A. Wietze, Esben Skovenborg, Kjetil Falkenberg Hansen, Tony Brooks 
and Declan Thomas Murphy.3 It is relevant to mention that this is one of the most 
successful and exciting meetings we have held under the aegis of NTSMB, in spite of 
the fact that quite a few of the network members from the humanities had expressed 
reservations about a theme such as this one, not in the least due to their fear that  
they wouldn’t be able to understand anything. Nothing could have been further  
from the truth. People in the audience from the humanities told me afterwards that 

                                                           
1  See http://www.ipem.ugent.be/research/nfwo/ 
2  See http://www.ntsmb.dk  for programs of previously held conferences and announcements of 

upcoming conferences. 
3  See http://www.ntsmb.dk 
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they had been given food for thought to a degree they had not believed possible, and 
representatives from the technical side of the fence revealed that they found speaking 
before a group like this to be a liberating and exciting experience.  Although we have 
not had such a concentration of technical talks during the ensuing biannual meetings, 
there have been technical talks sprinkled throughout the programs and people with 
technical backgrounds in the audience, largely due to the success of the November 
2002 meeting. That technical and traditionally humanistic approaches can comple-
ment and supplement each other has become evident within the context of the  
peer-reviewed online journal, JMM: The Journal of Music and Meaning, which is an 
outgrowth of NTSMB.4 

One of the reasons that this joining of the humanities and technology took place 
was that the emergence of NTSMB on the Danish scene attracted the attention of 
Jens Arnspang of Aalborg University at Esbjerg, who suggested that we establish 
some cooperation with the MOSART (Music Orchestration Systems in Algo-
rithmic Research and Technology) network. Ultimately, common interests led to 
an application to The Danish National Research Foundation for five years of fund-
ing for a Center of Excellence. The suggested name for the center was “Research 
Center for Music, Modeling and Meaning.” It was envisioned as a meeting place 
for humanists and for experts in CMMIR to meet and cooperate in research within 
(1) linguistic representation of sound, (2) sound, music and bodily gesture, (3) 
recognition and interpretation of form in sonic contexts, (4) issues in composing, 
(5) the creation of meaning in interactive sonic contexts, (6) the role of sound in 
creating a meaningful environment for human agents, (7) perception of sonic and 
visual phenomena, and (8) practice-based research: problems and perspectives. 
Our proposed center was among the 177 which were not funded. 16 centers were; 
only one of them had any appreciable connection to the humanities. So, the rejec-
tion of this application was par for this course, and any discouragement on that 
score has to be adjusted accordingly. What I found to be manifestly encouraging, 
however, were the exciting ways in which problems of the humanities and work 
within CMMIR dovetailed.  

Why aren’t there more projects of this sort? Of course, the first answer which im-
mediately suggests itself is already provided in the foregoing: lack of funding. So let’s 
roll back one step and ask: Why is it hard to persuade those with their hands on the 
purse strings that CMMIR is a place where the humanities and technology can meet 
and exciting things can happen as a result? 

3   Interdisciplinarity and CMMIR 

3.1   Obstacles? 

Some of the obstacles to cooperative projects involving the humanities and CMMIR 
are self-imposed and can be removed from among our own ranks on both sides. The 
burden of removing barriers to cooperation must be shared by both sides, however. It 

                                                           
4 See http://www.musicandmeaning.net 
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is, for example, interesting to note the nature of the interdisciplinarity sketched on the 
homepage for this conference:5 

“BACKGROUND  
The field of computer music is interdisciplinary by nature and closely  
related to a number of computer science and engineering areas such as  
information retrieval, programming, human computer interaction, digital 
libraries, hypermedia, artificial intelligence, acoustics, signal processing, 
etc...  

In this year's CMMIR we would like to emphasize on the human interac-
tion in music, simply the PLAY, meaning that papers related to sound mod-
eling, real-time interaction, interactive music, perception and cognition are 
particularly welcome together with the usual themes related to the traditional 
topics of the CMMR conference.” 

It is as if CMMIR as an area of research is unaware of its own potential for reach-
ing out or appealing to areas within the more traditional areas of humanistic music 
research. Of course, one might harbor the prejudice that people educated and trained 
within the sorts of sophisticated techniques required for solving the technical prob-
lems encountered in CMMIR would be a fortiori the only ones with anything to con-
tribute to the formulation of problems which the field might want to address. I must 
admit that it is easy to fall prey to this prejudice given the massive disregard there has 
been – and often still is – for formal and mathematical training within certain sectors 
of the humanities. The attitude is - although unfortunately justified in some quarters - 
unduly negative. As indicated in the foregoing, my experiences with various meetings 
within NTSMB, the response to JMM and the great enthusiasm and effort put forth by 
all involved in the Center-of-Excellence application, suggest that the areas which are 
ripe for productive cross-fertilization are many.   

The burden of proof will still lie with those within the traditional areas of 
CMMIR research and those of us from the humanities who have discovered what 
CMMIR is capable of to work together both in doing research and in formulating 
projects. This must be done in such a way that even those within the CMMIR com-
munity who are skeptical of what humanists can contribute and those within the 
humanities with limited formal skills can see the interesting prospects for coopera-
tion. It is far from given that those who sit in positions of power in funding and 
granting agencies are to be found among the intersecting group of researchers 
within CMMIR and within the traditional humanities who have seen the light. Many 
will undoubtedly see CMMIR through the lens of hard science and evaluate it posi-
tively to the extent that it can produce marketable technologies. Those who see it 
through the lens of the humanities may very well also evaluate it as a source of 
marketable technology, see this as something negative, and go no further, since 
“success” in the humanities has – at least on the face of it - much more to do with 
the winning over of minds and hearts (and number of pages published/books sold) 
than in the production of marketable technology.  

                                                           
5 See http://www.lma.cnrs-mrs.fr/~cmmr2005/ 
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3.2   Reflections upon – and Suggestions for – Ways in Which Computer Music 
Modeling and Retrieval Could Recontextualize (and Rejuvenate) the  
Philosophy of Music (with Some Positive Influence Running in the Other 
Direction as Well…) 

Since I come from philosophy, I will stick with philosophy of music as a source for 
examples of where the interests cultivated within CMMIR and interests cultivated 
within traditional humanistic music research could dovetail:  

 
1. Philosophy is still casting about for an understanding of language which can 

account for its dynamic, interactive online nature. Granted, moves have been 
made to augment the view of language as essentially an abstract mathematical 
structure:  
1.1. More attention is – finally – being paid to its development in human beings 

who are situated in a sounding world for whom language is for many years 
of early development a sensuous matter of the re-establishment of intimacy 
with a mother to whom one is an external rather than internal being and  
the establishment of intimacy and social bonds with a whole cast of other 
humans. The work being done to study the employment of “motherese”  
between a baby and its mother suggests fascinating prosodic resemblances 
between our earliest experience of what could be termed a proto-language 
and many established and preferred organizational schemes for note and 
phase partitioning within music across cultures. 6 

1.2. Speculative research is also in progress to try to account for how we as a 
species ever managed to develop language in the first place; prosodic and 
subsequent rhetorical features of language based upon sonic qualities are 
vying for a place in the pack in which, at least where philosophers were 
concerned, matters of reference and denotation where the lead dogs. 7 

1.3. There is also extremely exciting research being done to see if signify-
cant correlations can be established between sonic properties of a  
language group and the compositional music which its representatives 
have produced.8 

2. The role and significance of memory in the development of human cognition, 
culture and behavior has finally been recognized.9 Since music clearly has a place 
in, among other areas of human endeavor, the repertoire of mnemonic devices 
and strategies we have developed throughout millennia, study of “memorability” 
in terms of patterns and the like is a clear area for CMMIR-inspired research. 

3. As human corporality becomes more important as a factor in philosophical  
considerations involving the genesis of meaning and intentionality, the role of 
gesture in human interaction with the environment also becomes an increasingly 

                                                           
6  See the – extremely selective list of – references for Malloch and Trevarthen. 
7  See Christensen-Dalsgaard. 
8  See Magne et al. for up-to-the-minute CMMIR work in this area. 
9  For a glance at what is just the tip of the iceberg, fascinating insights into the way in which 

the need to remember can account for religious behavior for which it is  otherwise very diffi-
cult to give an account, are provided in Whitehouse, 2000. 
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relevant area of study for philosophers. Work which addresses this area has  
already been done within CMMIR research.10 

4. There are also very down-to-earth ways in which CMMIR could have a salutary 
influence on research within the philosophy of music: as researchers socialized 
within the behavioral paradigms of the way research is done in the natural  
sciences, people working within traditional CMMIR are used to working  
in groups and solving problems as a matter of teamwork. Within the traditional 
humanities – and philosophy is a paradigm case – there is still an ideal for  
research which involves the sovereign, solo thinker working in splendid, eremitic 
isolation. Although this very well may be a modus operandi which is suitable  
for some limited class of problems, given the complexity of contemporary knowl-
edge and the at times overwhelming amounts of it that should be taken into  
consideration when doing high-level research in an area involving something as 
multifaceted as music, it would serve many humanists well to take some cues 
from the established CMMIR community. 

4   Reality Check 

This contribution to these proceedings is the result of having reflected upon the re-
search within CMMIR with which I have been familiarizing myself during the past 
several years through reading, attending conferences such as CMMR2004 in Esbjerg, 
Denmark in May 2004 and ISMIR2004 in Barcelona, Spain in October 2004, and 
through my role as director of NTSMB and editor-in-chief of JMM: The Journal of 
Music and Meaning. In the course of both formal and informal colloquia and discus-
sions, it has time and time again been evident to me that the CMMIR community is 
yearning for more feedback from the humanities community, and that the humanities 
community can derive tremendous benefit from heightened exposure to and under-
standing of what is going on in CMMIR.  

It was my hope that these few pages would contribute to inspiring some sort of dia-
log between the two research communities. As it happened, a panel discussion which 
I had the pleasure of moderating at the conclusion of CMMR 2005 initiated some 
discussion of this sort. The participants were Tim Crawford of Goldsmiths College, 
University of London; Laurent Daudet, LAN, U. Pierre et Marie Curie (Paris 6), 
Paris, France; Kristoffer Jensen, Aalborg University Esbjerg, Esbjerg, Denmark; 
Leonello Tarabella, CNR, Pisa, Italy and Sølvi Ystad, CNRS-LMA, Marseille, 
France.  Audience participation was enthusiastic, and I received some e-mails after-
wards as well, both from members of the panel and from audience participants. Sev-
eral themes emerged throughout the discussion and ensuing correspondence. Here is 
an overview. 

Daudet made some remarks before and after the panel discussion which are highly 
relevant, since they honestly reflect the pros and cons attendant to interdisciplinary 
work. In an e-mail following the panel discussion, he noted that although much lip 
service is paid to the promotion of interdisciplinarity within universities, more often 
than not anything that crosses departmental lines runs into funding difficulties. Just  
as sobering is the fact that if results do come of this sort of research, they are not  
                                                           
10 See, for example, Murphy and Tarabella. 



 Interdisciplinarity and Computer Music Modeling and Information Retrieval 271 

 

acknowledged as “really serious research.” His personal estimate was that three  
articles in a publication such as JMM: The Journal of Music and Meaning would have 
less value than one in the IEEE Transactions on Signal Processing for someone such 
as himself – a researcher working in an acoustics laboratory – with regard to promo-
tions and the like. These facts do not stop people from doing interdisciplinary work, 
though, according to this contributor: Daudet believes that most people do interdisci-
plinary research; they just aren’t accorded official recognition for it. 

Some more variations on the theme of the hard facts of life as these manifest them-
selves with regard to interdisciplinarity were heard from the audience. At times during 
the discussion much of the responsibility for the difficulties inherent in interdiscipli-
nary work with the humanists when researchers from the humanities are mixed  
together with researchers from the hard sciences, since the technological and mathe-
matical skills on the part of the humanists are so underdeveloped. That this can,  
regrettably, be the case was mentioned earlier in this paper.  Observations such as 
these invoke shades of the debate which erupted after C.P. Snow’s Rede Lecture at 
Cambridge from 1959 entitled The Two Cultures. Nearly half a century later one 
senses that there still is some currency in Snow’s statement that 
 

I believe the intellectual life of the whole of western society is increasingly 
being split into two polar groups. When I say the intellectual life, I mean to 
include also a large part of our practical life, because I should be the last per-
son to suggest the two at the deepest level can be distinguished. I shall come 
back to the practical life little later. Two polar groups: at one pole we have 
the literary intellectuals. . . . at the other, and as the most representative, the 
physical scientists. Between the two a gulf of mutual incomprehension – 
sometimes (particularly among the young) hostility and dislike, but most of 
all lack of understanding. They have a curious distorted image of each other. 
Their attitudes are so different that, even on the level of emotion, they can’t 
find much common ground [7, pp. 3-4]. 

 
Literary intellectuals were, according to Snow, the worst apples in the barrel. Other 

areas of the humanities were not much better off. As I stated earlier in this piece, 
however, I believe that particularly with regard to CMMIR there is cause for opti-
mism with respect to a greater dovetailing of traditional humanistic inquiry and in-
quiry of the more “scientific” sort.  Each of the issues raised in 3.2 evinces a hybrid 
humanities-science nature.11 The very fact that this article advocating these applica-
tions of CMMIR appears in this volume is a sign that there is interest in doing 
CMMIR research on topics stemming from a very humanistic side of the fence.  

Another reason for optimism is the sort of response articulated in an e-mail I re-
ceived after the panel discussion from Mark Havryliv, a young researcher within 
CMMIR who – acknowledging that the consequences of a lack of dialog between 

                                                           
11  Amusingly enough, as I was adding this ”Reality Check” section to the manuscript which 

was used in the ”working” proceedings for the conference, I happened upon [1] by Oxford 
computer scientist Lou Burnard which explicitly deals with similar considerations and em-
ploys The Two Cultures as a point of departure, but does so almost solely with regard to the 
use of “humanities computing”, as it is called, in order to study literary artifacts. 
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computer musicians and philosophers/thinkers are deleterious – finds the notion of 
such dialog to be very important and even odd that it should be a novel idea. 

Rodrigo Segnini was another e-mail correspondent who commented on the panel 
discussion and found interdisciplinarity to be a good thing, but warned against an 
unintended result of efforts to promote it “where members of one discipline stretch 
their ideas into other domains, often resulting in work that is useless in either one.” 
His suggestion for future self-regulation is to ask researchers whose work is deemed 
as being exemplary within interdisciplinary studies to review submissions to journals 
and conferences. 

Lastly, Sølvi Ystad wrote me an e-mail not long after the conclusion of the confer-
ence about a CMMIR project for which she received three years of funding. I quote 
from the attached project summary: 

 

Towards the meaning of sounds 
 

Why do we easily distinguish a sound produced by a breaking glass from  
the sound produced by a shock on a metallic structure, although the spectral 
content of the two sounds is very close? Why do we easily accept the ersatz 
of a horse’s hooves made by a sound effects engineer knocking coco-nuts  
together? These questions, representing every-day examples both illustrate 
the complexity and the pragmatism behind the rather unknown concept  
related to the: meaning of sounds. This project aims at establishing relations 
between the structure of sounds, and their impact on human beings. It  
is based on an interdisciplinary approach associating acoustics, signal proc-
essing, psychoacoustics and cognitive neuroscience.  The complementarities 
of these domains make it possible to address this crucial aspect of sound 
communication [13]. 

 

These issues are central to philosophical discussion of meaning and perception, and 
point to the ways in which the technologies now at the disposal of CMMIR research 
permit empirical work on topics which were once only discussable in abstract, specu-
lative terms. A project such as this one is a fine example of interdisciplinary work 
within CMMIR research which extends into the more traditional areas of humanistic 
music research. 

5   Conclusion 

Some pages ago I commented that “It is as if CMMIR as an area of research is un-
aware of its own potential for reaching out or appealing to areas within the more tradi-
tional areas of humanistic music research” on the basis of the way the conference had 
presented itself on its homepage. By the end of the Pisa conference, things had moved 
several steps in the right direction. The level-headed and cautionary reservations to 
which some participants gave voice during and after the panel discussion with regard 
to the potential pitfalls which should be avoided in interdisciplinary CMMR research 
are warranted, however. They need to be taken seriously and should contribute to the 
self-regulation and quality control which must accompany this sort of research.  

The humanities face tremendous, but exciting challenges in the new century,  
as questions as to what it is to be human being become increasingly accessible to 
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empirical study, as is the case with the nature of our perception and memory of music 
as these may be studied by CMMIR. As a philosopher, I see the opportunity for the 
direction and development of technology towards the ends of greater understanding of 
what it is to be human, and – conversely – the embracing of technology on the part of 
the humanities to be the most exciting future for both fields of endeavor, and CMMIR 
is one of the paradigm areas where this fruitful exchange is already taking place. 
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